

Little-c creativity, Big-C Creativity

Formal Definitions and Implications

What is creativity?

The Problem:

- Can research on creativity be productive without consensus on what it entails?
- □ In particular, what is a "creative idea"?
- Can we really study creative talent or its development without knowing what counts as a creative idea?
- After all, the product, person, and process perspectives on creativity all depend on what counts as a creative idea

Past reviews and discussions

- □ Plucker, Beghetto, & Dow (2004)
- □ Runco & Jaeger (2012)
- □ Simonton (2012)
- ☐ Piffer (2012)

Four critical questions:

- What are the assessment criteria?
- □ How are the assessments scaled?
- How are the assessments integrated?
- Who makes the assessments?

What are the assessment criteria?

- Two-criterion definitions
 - Some variation on
 - novel or original, and
 - useful, adaptive, or functional
- But I would argue that "novelty" conflates "originality" with "surprise"
- If we split the concept into two, then we get a three-criterion definition: originality, utility, and surprise

What are the assessment criteria?

- Three-criterion definitions
 - US Patent Office:
 - new, useful, and nonobvious
 - Boden (2004):
 - novel, valuable, and surprising
 - Amabile (1996):
 - novel
 - appropriate, useful, correct, or valuable
 - heuristic rather than algorithmic

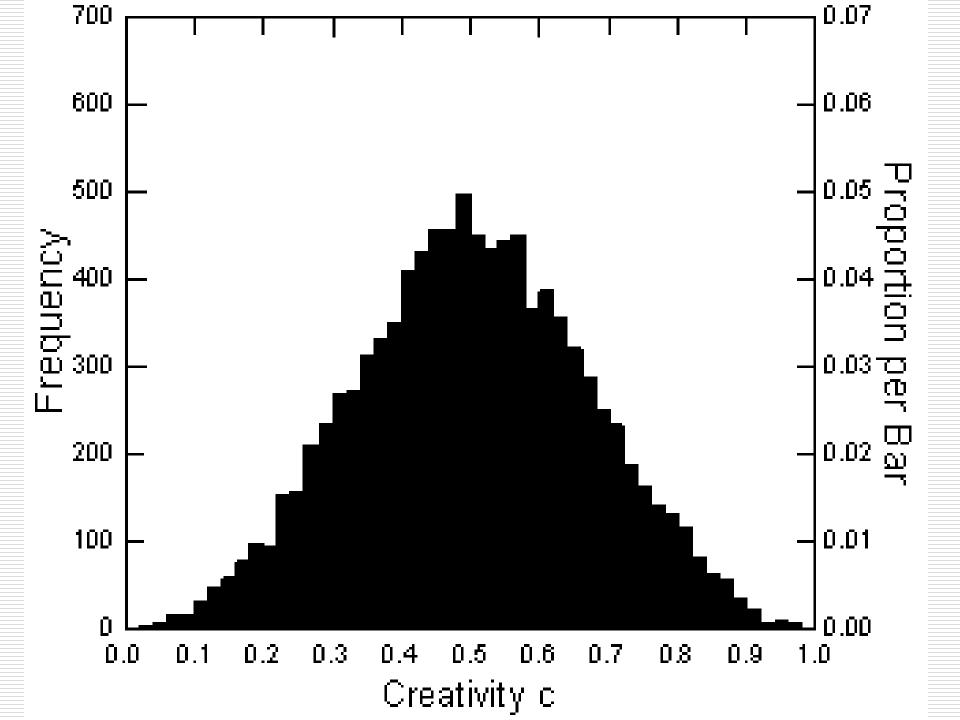
How are the assessments scaled?

- Qualitative? Yes/No?
- Quantitative? Numbers?
 - Ordinal? Ranks?
 - Interval? Continuous?
 - Ratio? Zero point?
 - Proportion or probability? 0-1?
 - My preference for latter

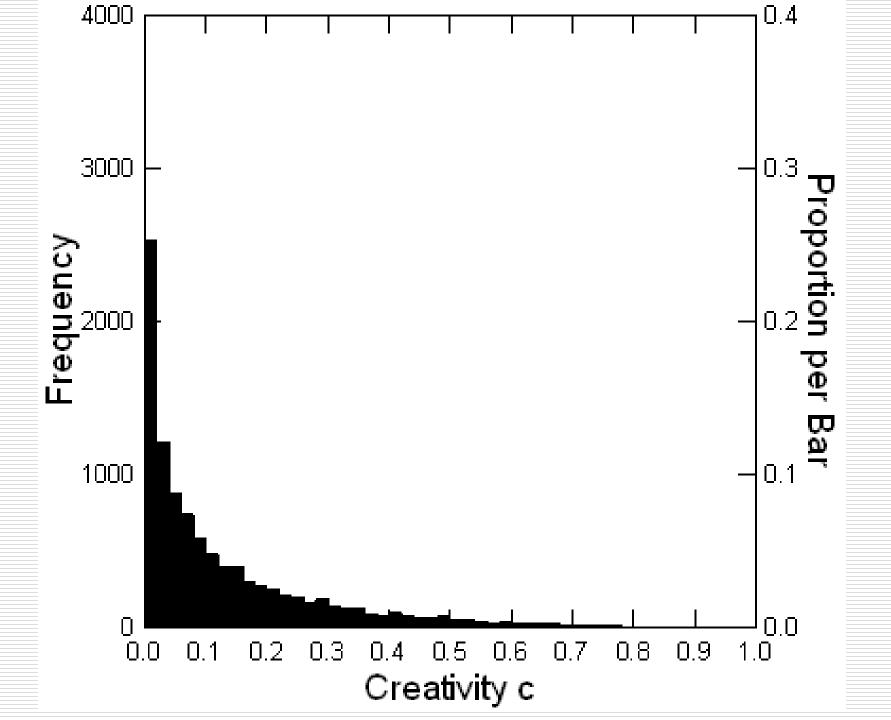
How are the assessments integrated?

- ☐ Additive?
- Multiplicative?
 - Why the latter > former
 - □ The reinvented wheel?
 - The bank safe made out of soap bubbles?

Who makes the assessments?

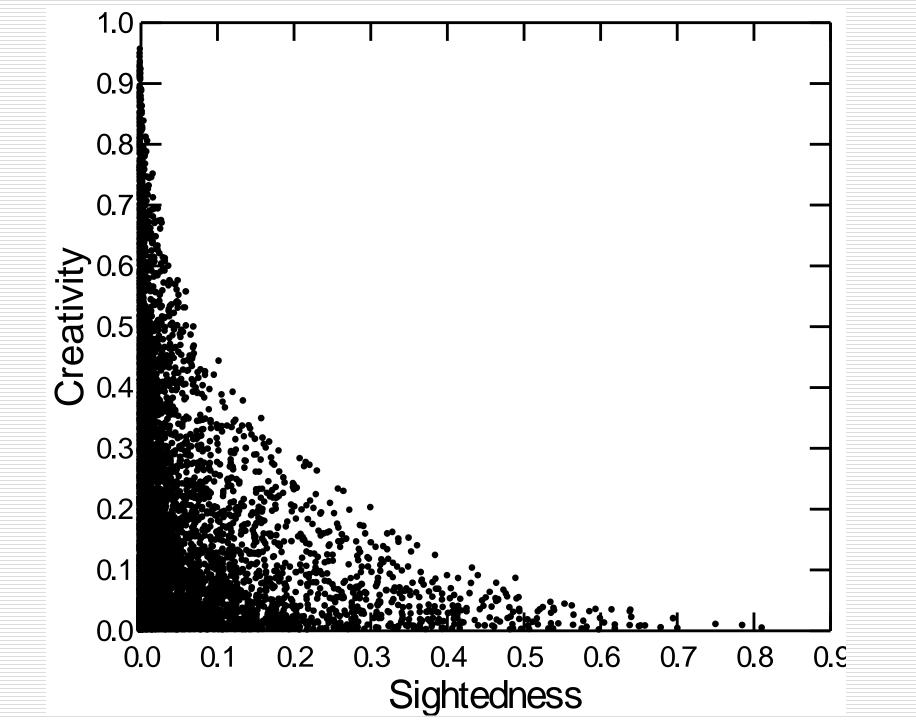

- ☐ The individual?
 - "little-c creativity"
 - "P-creative" (Boden, 2004)
- □ The field?
 - "Big-Creativity"
 - "H-creative" (Boden, 2004)
- Hence, need for individual- and fieldlevel definitions

- ☐ Given k ideas x_1 , x_2 , x_3 , ... x_i , ... x_k , how do we gauge their creativity?
- □ Three parameters:
 - personal probability p_i,
 - \square where $0 \le p_i \le 1$
 - personal utility u_i,
 - \square where $0 \le u_i \le 1$
 - personal obviousness v_i,
 - \square where $0 \le v_i \le 1$


- □ N.B.: $p_i = 0$ only when idea x_i is not initially available to the individual without entering an "incubation period"
- ☐ An serendipitous priming stimulus initiates the "spreading activation" that eventually yields $p_i > 0$
- ☐ Hence, a eureka or aha! experience

- Derived parameters
 - \blacksquare personal originality $(1 p_i)$,
 - \square where $0 \le (1 p_i) \le 1$
 - \blacksquare personal surprisingness (1 v_i),
 - \square where $0 \le (1 v_i) \le 1$
- ☐ Therefore, *personal creativity*
 - $c_i = (1 p_i)u_i(1 v_i),$
 - \square where $0 \le c_i \le 1$
 - literally "little-c" creativity

- Two significant implications
 - First Whereas in the
 - Additive model personal creativity has normal distribution, in the
 - Multiplicative model personal creativity has skewed distribution ... as in ...


versus

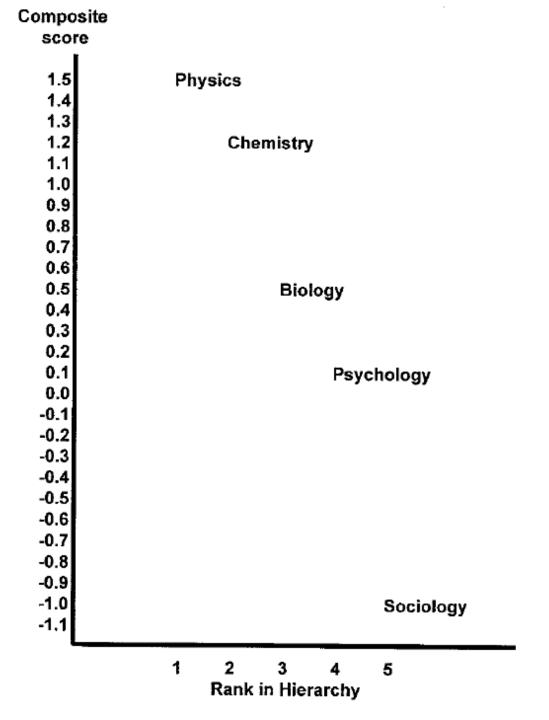
- □ Two significant implications
 - Second -
 - The necessity for BVSR creativity,
 - □ i.e., blind variation and selective retention (Campbell, 1960; Simonton, 1985-2013)
 - That is, ideas that are highly sighted cannot be creative whereas highly blind ideas can vary greatly in creativity, requiring a selection-retention procedure to winnow out the wheat from the chaff
 - □ To demonstrate ...

- Two significant implications
 - Second -
 - \square The sightedness of x_i is given by
 - $s_i = p_i u_i v_i$, where $0 \le s_i \le 1$
 - i.e., an idea is highly sighted to the degree that it is highly probable, highly useful, and highly probable because it is already known to be highly useful
 - The sightedness of the entire set of k ideas is given by $S = 1/n \Sigma s_i$, where $0 \le S \le 1$

- □ Two significant implications
 - Second -
 - ☐ Hence, it follows that
 - the *blindness* of x_i is given by $b_i = 1 s_i$
 - and the *blindness* of the entire set of k ideas is given by B = 1 S.
 - Concentrating on single ideas, note that
 - **a** as $b_i \rightarrow 0$, $c_i \rightarrow 0$; but that
 - as $b_i \rightarrow 1$, then max- $c_i \rightarrow 1$ but $\sigma_c^2 \rightarrow 1$
 - viz. the following scatter plot ...

Now time to switch to

Big-C Creativity


- Csikszentmihályi's (1990) systems perspective
 - Domain "the parameters of the cultural symbol system" (p. 190)
 - Field "individuals who know the domain's grammar of rules and are more or less loosely organized to act as gatekeepers to it" (p. 201)
 - \square Field size = n (including the individual),
 - where $250 \le n \le 600$ (Wray, 2010)

- \square If M_j identifies the *j*th field member:
 - $P_i = 1/n \Sigma p_{ii}$, = consensual probability
 - $U_i = 1/n \Sigma u_{ii}$, = consensual utility
 - $V_i = 1/n \Sigma v_{ji}$, = consensual obviousness; and
 - $C_i = 1/n \Sigma c_{ji}$, = consensual creativity,

 □ or literally its "Big-C" creativity
- where all values are positive decimals ranging from 0 to 1

- Yet given that the consensual parameters are averages we must define the following variances:
 - $\sigma^2(p) = 1/n \Sigma (p_{jj} P_j)^2$
 - $\sigma^2(u) = 1/n \Sigma (u_{ii} U_i)^2$
 - $\sigma^2(v) = 1/n \Sigma (v_{ii} V_i)^2$, and
 - $\sigma^2(c) = 1/n \sum (c_{ii} C_i)^2$
 - where all variances range from 0 to 1

- Hence, crucial distinction among
 - High-consensus fields where
 - $\square \ \sigma^2(p) \approx \sigma^2(u) \approx \sigma^2(v) \approx \sigma^2(c) \approx 0,$
 - Medium-consensus fields where
 - \square $\sigma^2(p) \approx \sigma^2(u) \approx \sigma^2(v) \approx \sigma^2(c) \approx .5$, and
 - Low-consensus fields where
 - \square $\sigma^2(p) \approx \sigma^2(u) \approx \sigma^2(v) \approx \sigma^2(c) \approx 1$
- ☐ To illustrate, in the sciences ...

- Hence, crucial distinction between
 - High-consensus fields where
 - \square $\sigma^2(p) \approx \sigma^2(u) \approx \sigma^2(v) \approx \sigma^2(c) \approx 0$,
 - Medium-consensus fields where
 - \square $\sigma^2(p) \approx \sigma^2(u) \approx \sigma^2(v) \approx \sigma^2(c) \approx .5$, and
 - Low-consensus fields where
 - \square $\sigma^2(p) \approx \sigma^2(u) \approx \sigma^2(v) \approx \sigma^2(c) \approx 1$
- These variances are absolutely critical in calibrating the relation between little-c and Big-C creativity!

- \square Assume idea x_i was created by individual M_1
- \square Hence, the contrast is between c_{1i} and C_i
- \square Although the latter includes the former, any part-whole bias shrinks as n increases or as $\sigma^2(c)$ decreases

- Creativity evaluations in high- versus low-consensus fields
 - High-consensus fields
 - \square $P_i \approx p_{1i}$, $U_i \approx u_{1i}$, $V_i \approx v_{1i}$, and $C_i \approx c_{1i}$
 - "neglected genius" extremely rare

- Creativity evaluations in high- versus low-consensus fields
 - Low-consensus fields
 - \square Case 1: $C_i > c_{1i}$ ("attributed talents")
 - \square Case 2: $C_i < c_{1i}$ ("neglected geniuses")
 - \square Case 3: $C_i \approx c_{1i}$
 - Individual M₁ "typical" of field
 - $C_i \approx c_{1i}$ does *not* imply that $P_i \approx p_{1i}$, $U_i \approx u_{1i}$, and $V_i \approx v_{1i}$ except when $C_i \approx c_{1i} \approx 1$

- Personal versus consensual creativity measurement in low-consensus fields
 - As $\sigma^2(c) \to 1$, then a large proportion of the field would arrive at the value $c_{ji} = 0$ $(j \neq 1)$
 - Moreover, increased difficulty of calibrating the transition from "little-c" to "Big-C" creativity
 - e.g., the CAQ (Carson, Peterson, & Higgins, 2005):

H. Scie	entific Discovery
0.	I do not have training or recognized ability in
	this field (Skip to Theater
1.	I often think about ways that scientific prob-
	lems could be solved.
2.	I have won a prize at a science fair or other local
	competition.
3.	I have received a scholarship based on my work
	in science or medicine.
4.	I have been author or coauthor of a study pub-
	lished in a scientific journal.
*5.	I have won a national prize in the field of sci-
	ence or medicine.
*6.	I have received a grant to pursue my work in
	science or medicine.
7.	My work has been cited by other scientists in
	national publications.

E. Crea	ntive Writing
0.	I do not have training or recognized talent in
	this area (Skip to Humor).
1.	I have written an original short work (poem or
	short story).
2.	My work has won an award or prize.
3.	I have written an original long work (epic,
	novel, or play).
4.	I have sold my work to a publisher.
5.	My work has been printed and sold publicly.
6.	My work has been reviewed in local publica-
	tions.
*7.	My work has been reviewed in national publi-
	cations.

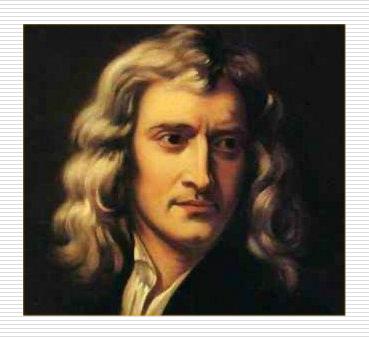
Two Implications

☐ First -

Big-C creativity is not just a simple quantitative extension of little-c creativity, but represents a distinct set of field assessments that may or may not dovetail with those operating at the individual level

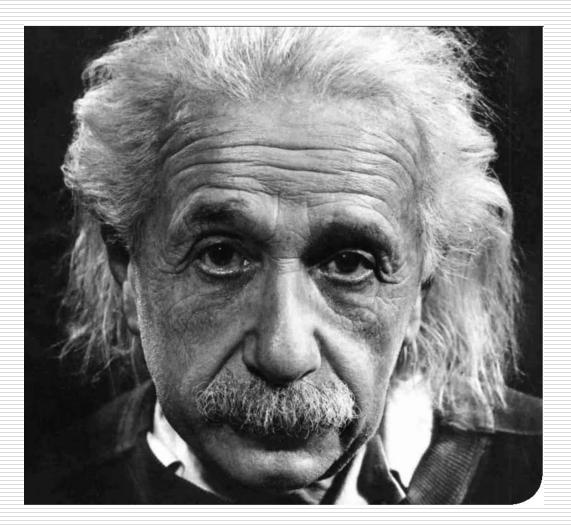
Extremely High Consensus

Moderate Consensus



Extremely Low Consensus

little-c Big-C


Two Implications

- □ Second -
 - Creative talent and its development must differ for
 - high-consensus versus low-consensus fields, and
 - ☐ little-c versus Big-C creativity
- Or stated more visually ...

ALBERT EINSTEIN

VS

