## **PSC 204B LECTURE OUTLINES**

In parentheses are indicated the pages in your textbook that roughly correspond with the lectures.

## Part One: Multiple Correlation/Regression Analysis

- I. Introduction
  - A. Syllabus: Schedule, Content, and Grading
  - B. Course Content: Correlations and Causal Models
- II. Review and Overview: Critical Distinctions (pp. 1-16)
  - A. Constants versus Variables
  - B. Dependent versus Independent Variables
    - 1. Experimental versus Correlational Data
    - 2. Endogenous versus Exogenous Variables
  - C. Measured versus Unmeasured Variables
    - 1. Observed versus Latent Variables
    - 2. Model Misspecification versus Measurement Error
  - D. Levels of Measurement: Nominal, Ordinal, Interval, and Ratio Scales
    - 1. Contrasts Concerning:
      - a. Central Tendency
      - b. Variation
      - c. Distribution
      - d. Transformation
    - 2. Complications and Simplifications:
      - a. Rank-Category Measures and Ordinal Data with Tied Ranks
      - b. Categorical (Qualitative, Nominal) versus Numerical (Quantitative, Continuous) Measures
  - E. Simple versus Complex Causal Theories
    - 1. Bivariate versus Multivariate Causality
    - 2. Linear versus Nonlinear Relations
    - 3. Additive versus Multiplicative Functions
    - 4. Recursive versus Nonrecursive Models
    - 5. Single-Equation versus Multiple-Equation Systems
  - F. Descriptive versus Inferential Statistics
- III. Bivariate Correlation: The Pearson Product-Moment Coefficient (r) between 2 Numerical Measures (pp. 19-50)
  - A. How is *r* derived? Three Derivations
    - 1. Cross-Products and Covariances
    - 2. Differences and Prediction
    - 3. Least Squares and Regression
  - B. Are there other coefficients besides r?
    - 1. Incognito r's ( $\phi$ , point-biserial, and  $\rho$ )
    - 2. Pseudo-*r*'s (tetrachoric, polychoric, and biserial)
  - C. What does *r* mean?
    - 1. Prediction
    - 2. Explanation
    - 3. Estimation
  - D. What influences the size of r? (pp. 53-62)
    - 1. Bivariate Distributions
    - 2. Curvilinear Relations
    - 3. Outliers
    - 4. Range Restrictions
    - 5. Variable Reliabilities
  - E. How big must r be to infer a sizable causal effect?

- IV. Multiple Regression Analysis for Numerical Measures (pp. 64-92, 98-99)
  - A. Two Problems
    - 1. How to estimate a causal effect between two variables controlling for a third
      - a. First solution: The Partial Correlation  $r_{12.3}$
      - b. Second solution: The Semipartial (Part) Correlation  $r_{1(2.3)}$
      - c. Third solution: The Partial Regression Coefficients  $B_{12.3}$  and  $B_{13.2}$
    - 2. How to estimate the total causal effect of two causal variables on a single effect variable: R and  $R^2$
  - B. Precautions
    - 1. Descriptive Statistics: Suppression
    - 2. Inferential Statistics:
      - a. Multicollinearity (pp. 419-430)
      - b. Inflated  $R^2$
  - C. Generalization to k > 2
  - D. Significance tests (pp. 151-176)
    - 1. Individual Variables
      - a. Simultaneous Model
      - b. Hierarchical Model
      - c. Stepwise "Model"
    - 2. Variable Sets
  - E. Computer Execution
    - 1. Input
    - 2. Output
- V. Review and Exam I