

Creativity and Sightedness:

Why Creative Solutions

Cannot be Sighted ...

or, Why Blind Solutions Must Maximally Vary in Creativity

Introduction

- Blind-variation and selective-retention theory of creativity (BVSR; Campbell, 1960)
- Needless controversy because nobody defined either creativity or blindness
- Moreover, "blindness" is a concept that necessarily provokes misunderstanding
- Hence, the need to replace it with its inverse, namely "sightedness" (Sternberg, 1998)
- To illustrate, consider problem solving

Solution Parameters

- Set X of $k \ge 1$ potential solutions x_i , $i = 1 \dots k$
- Final utility u_i , where $0 \le u_i \le 1$
 - e.g., the proportion of solution criteria satisfied
- Initial probability p_i , where $0 \le p_i \le 1$,
 - i.e., if $p_i = 0$, then not immediately available (but accessible after suitable priming stimuli)
- *Prior knowledge* v_i , where $0 \le v_i \le 1$
 - viz. how much the value of u_i is already known
 - e.g., via domain-specific expertise, such as "strong" or "algorithmic" methods

Maximally Sighted Solution

- **Sightedness** $s_i = u_i p_i v_i$, where $0 \le s_i \le 1$
 - If $s_i = 1$, then totally sighted
 - i.e., the solution is highly useful, highly probable, and it is known in advance that it will be highly useful
 - viz. "routine" or "reproductive" solutions
 - sighted solutions are homogeneous: $u_i = p_i = v_i = 1$
 - If $s_i = 0$, then totally unsighted
 - holds whenever $u_i = 0$, $p_i = 0$, and/or $v_i = 0$
 - hence, unsighted solutions are heterogeneous
 - N.B.: Blindness $b_i = 1 s_i$

Maximally Creative Solution

- Creativity $c_i = u_i (1 p_i) (1 v_i)$,
 - where $0 \le c_i \le 1$, and
 - $(1 p_i)$ = originality (i.e., low probability)
 - (1 v_i) = surprisingness or "nonobviousness" (as in the third US Patent Office criterion)
- i.e., "productive" or "innovative" solutions
- N.B.: If $u_i = 0$, $p_i = 1$, or $v_i = 1$, then $c_i = 0$
 - Hence, when $s_i = 1$, $c_i = 0$
 - i.e., highly sighted solutions cannot be creative
- But what happens as $s_i \rightarrow 0$ (or as $b_i \rightarrow 1$)?

Minimally Sighted (Maximally Blind) Potential Solutions

- Their intrinsic heterogeneity:
 - Many contrasting parameter values yield b_i = 1
- Two key examples -
 - One: $u_i = 0$, $p_i = 1$, and $v_i = 0$,
 - e.g., cognitive biases or functional fixedness
 - e.g., Watson's original "like-with-like" DNA coding
 - Two: $u_i = 1$, $p_i = 0$, and $v_i = 0$,
 - BINGO!
 - viz. a maximally creative solution

Minimally Sighted (Maximally Blind) Potential Solutions

- In general, as b_i → 1 (or s_i → 0), the following increase at an accelerating rate:
 - the expectation M_{c} ,
 - the variance σ_c^2 , and
 - *c*-max: specifically, *c*-max \rightarrow 1
- Hence, the need for BVSR,
 - to winnow the wheat from the chaff,
 - especially because the biggest kernels are located where the chaff is most voluminous
 - as depicted in …

