

Scientific Creativity as a Combinatorial Process

The Chance Baseline

#### Goal

#### Formulate a theory of scientific creativity

that uses

- Parsimonious assumptions and
- Logical derivations
- to obtain
  - Comprehensive explanations and
  - Precise predictions
- with respect to the most secure empirical results

In other words, getting the most with the least

#### Argument: Part One

#### Combinatorial models

- currently get the most with the least relative to any alternative theory.
  - That is, such models
  - make the fewest assumptions,
  - and by logical inferences
  - explain the widest range of established facts
  - and make the most precise predictions with respect to those data

#### Argument: Part Two

- Even if combinatorial models are incomplete from the standpoint of one or more criteria,
- such models must still provide the baseline for comparing all alternative theories.
- That is, rival theories must account for whatever cannot be accounted for by chance alone, or what exceeds the chance baseline (cf. "null" hypothesis; research on the "hot hand" or parapsychology; etc.)

Creativity in Science: Two Critical Research Sites

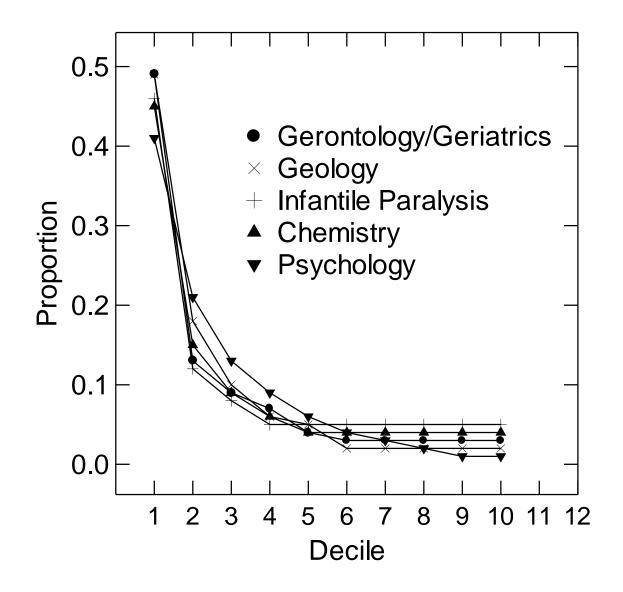
- Scientific Careers:
  - Publications
- Scientific Communities:
  - Multiples

#### Publications

Individual VariationLongitudinal Change

Skewed Cross-sectional Distribution

Skewed Cross-sectional Distribution  $-10\% \rightarrow 50\% / 50\% \rightarrow 15\%$ 



Skewed Cross-sectional Distribution
 – Lotka's Law

Skewed Cross-sectional Distribution
 – Lotka's Law:

• 
$$f(T) = k T^{-2}$$
 or  $\log f(T) = \log k - 2 \log T$ 

Skewed Cross-sectional Distribution
 – Lotka's Law:

- $f(T) = k T^{-2}$  or  $\log f(T) = \log k 2 \log T$
- where *T* is total lifetime output

- Skewed Cross-sectional Distribution
  - Lotka's Law:
  - Price's Law:
    - $N^{1/2} \rightarrow 50\%$  of total field output

- Skewed Cross-sectional Distribution
  - Lotka's Law:
  - Price's Law:
    - $N^{1/2} \rightarrow 50\%$  of total field output
    - where *N* is size of field

Skewed Cross-sectional Distribution
Quantity-Quality Relation

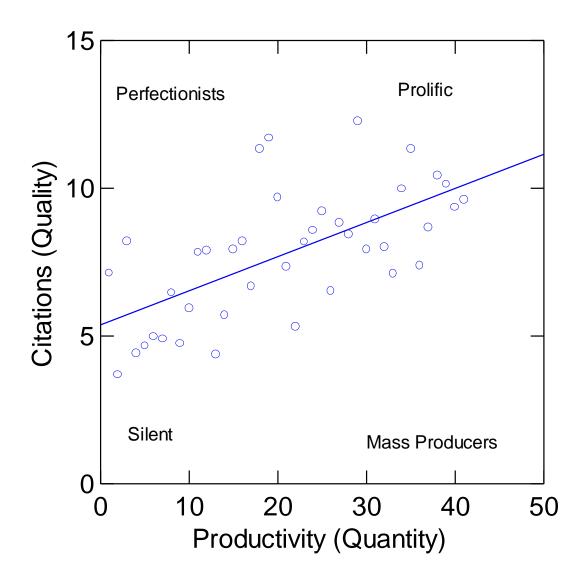
- Skewed Cross-sectional Distribution
- Quantity-Quality Relation

– Equal-Odds Baseline:  $H_i = \rho_1 T_i + u_i$ 

- Skewed Cross-sectional Distribution
- Quantity-Quality Relation
  - Equal-Odds Baseline:  $H_i = \rho_1 T_i + u_i$
  - where  $\rho_1$  is the overall "hit rate" (0 <  $\rho_1$  < 1) for individuals in a given domain

- Skewed Cross-sectional Distribution
- Quantity-Quality Relation
  - Equal-Odds Baseline:  $H_i = \rho_1 T_i + u_i$
  - where  $\rho_1$  is the overall "hit rate" ( $0 < \rho_1 < 1$ ) for individuals in a given domain,
  - $-H_i$  is the number of "hits" (e.g., high-impact publications) for individual *i*, and

- the random shock  $0 \le u_i \le T_i (1 - \rho_1)$ 



- Skewed Cross-sectional Distribution
- Quantity-Quality Relation
  - Equal-Odds Baseline:  $H_i = \rho_1 T_i + u_i$
  - where  $\rho_1$  is the overall "hit rate" (0 <  $\rho_1$  < 1) for individuals in a given domain,
  - $-H_i$  is the number of "hits" (e.g., high-impact publications) for individual *I*, and
  - the random shock  $0 \le u_i \le T_i (1 \rho_1)$
  - N.B.: If  $\rho_1$  were a linear function of  $T_i$ , then the overall function would be quadratic, not linear

#### Longitudinal Change

#### Randomness of Annual Output

- No "runs"
- Poisson Distribution
  - $P(j) = \mu^{j} e^{-\mu} / j!$
  - $e = 2.718... \text{ and } j! = 1 \times 2 \times 3 \times ... \times j$

| Scientist | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10  | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |  |
|-----------|---|---|---|---|---|---|---|---|---|-----|----|----|----|----|----|----|----|----|----|----|--|
| 1         | 1 | 1 | 0 | 2 | 2 | 1 | 3 | 2 | 0 | 1   | 0  | 3  | 0  | 1  | 2  | 1  | 1  | 0  | 2  | 2  |  |
| 2         | 2 | 2 | 0 | 1 | 1 | 2 | 0 | 1 | 2 | 0   | 1  | 2  | 3  | 2  | 1  | 1  | 1  | 2  | 0  | 1  |  |
| 3         | 2 | 1 | 1 | 0 | 2 | 0 | 1 | 3 | 0 | 2   | 1  | 2  | 1  | 1  | 2  | 1  | 2  | 2  | 1  | .0 |  |
| 4         | 0 | 1 | 2 | 0 | 2 | 0 | 1 | 3 | 1 | 4   | 0  | 0  | 2  | 1  | 1  | 1  | 1  | 2  | 1  | 2  |  |
| 5         | 2 | 1 | 0 | 1 | 0 | 1 | 1 | 3 | 2 | . 1 | 1  | 2  | 3  | 2  | 1  | 1  | 2  | 1  | 0  | 0  |  |
| 6         | 0 | 0 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 0   | 1  | 1  | 2  | 0  | 1  | 3  | 2  | 2  | 2  | 1  |  |
| 7         | 2 | 2 | 0 | 1 | 2 | 0 | 1 | 1 | 2 | 3   | 1  | 2  | 0  | 3  | 1  | 2  | 1  | 0  | 1  | 0  |  |
| 8         | 1 | 2 | 0 | 2 | 2 | 1 | 3 | 0 | 1 | 1   | 3  | 2  | 1  | 0  | 0  | 1  | 0  | 1  | 2  | 2  |  |
| 9         | 2 | 1 | 0 | 2 | 1 | 1 | 2 | 4 | 0 | 0   | 2  | 1  | 3  | 0  | 1  | 1  | 0  | 2  | 1  | 1  |  |
| 10        | 1 | 1 | 2 | 1 | 2 | 1 | 0 | 3 | 2 | 1   | 1  | 1  | 2  | 3  | 2  | 1  | 0  | 0  | 1  | 0  |  |

Career year

#### Representative Productivity Distributions for 10 Hypothetical Scientists

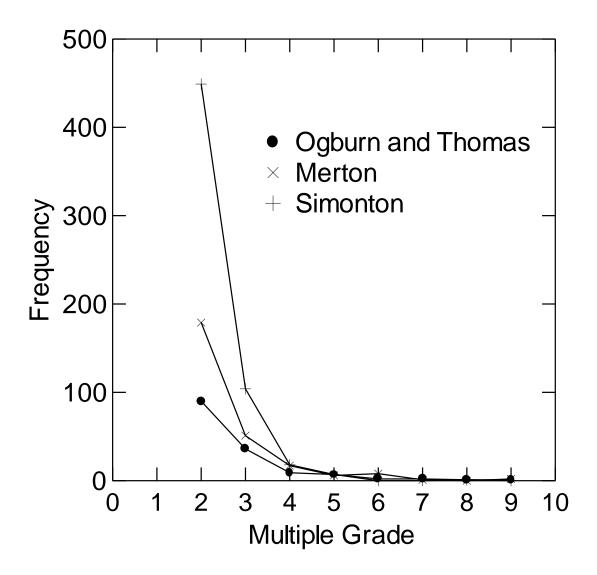
*Note*. Each scientist is presumed to produce 25 contributions randomly distributed over 20 career years, with a Poisson distribution for the number contributions per yearly unit (where  $\mu = 1.25$ ).

#### Longitudinal Change

- Randomness of Annual Output
- Quantity-Quality Relation
  - Random Fluctuation around a Quality Ratio Baseline
  - Hence, the Equal-Odds Baseline:
  - $H_{it} = \rho_2 T_{it} + u_{it}$  ( $\rho_2 = \rho_1$  if estimated from the same cross-sectional sample)
  - for the *i*th individual in career year *t*,
  - and where  $0 \le u_{it} \le T_{it} (1 \rho_2)$



#### Distribution of Multiple Grades



#### Multiples

- Distribution of Multiple Grades
- Temporal Separation of Multiple Discoveries

### Multiples

- Distribution of Multiple Grades
- Temporal Separation of Multiple Discoveries
- Individual Variation in Multiple Participation

### Multiples

- Distribution of Multiple Grades
- Temporal Separation of Multiple Discoveries
- Individual Variation in Multiple Participation
- Degree of Multiple Identity

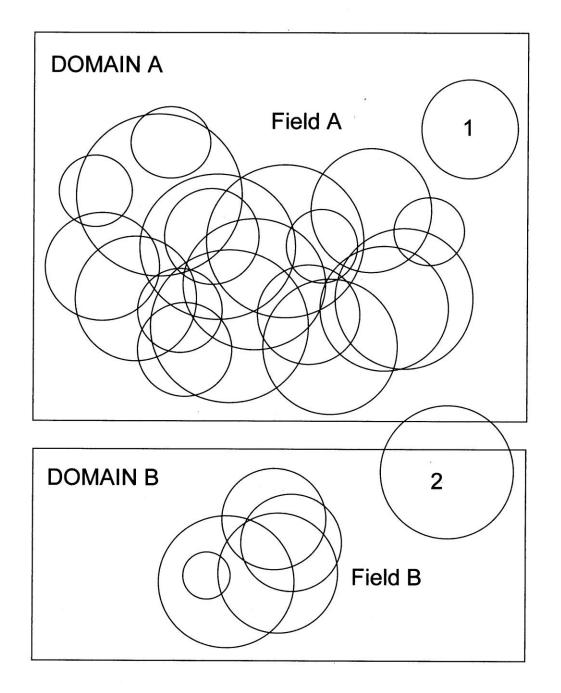
#### **Combinatorial Processes**

- Definitions
- Assumptions
- Implications
- Elaboration
- Integration

#### Definitions

Individual

- Domain
- Field



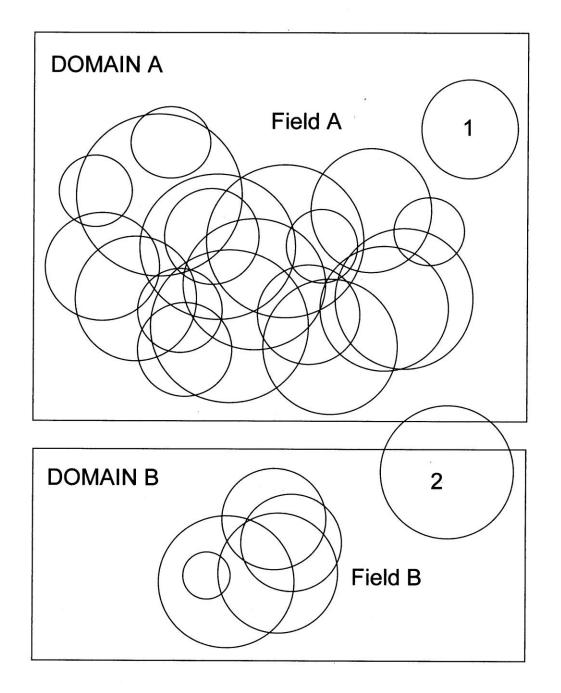
-



#### Individual Samples from Domain Ideas



## Individual Samples from Domain Ideas Assume samples random or quasi-random

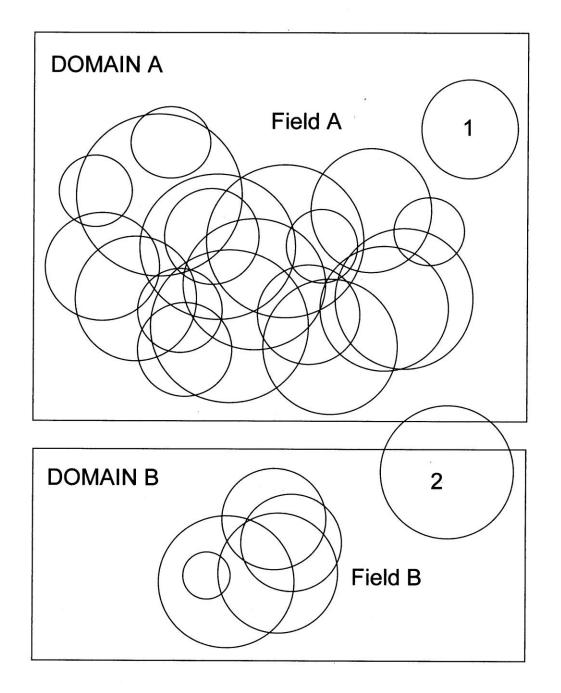


-



# Individual Samples from Domain Ideas Within-Field Variation in Sample Size

- Individual Samples from Domain Ideas
- Within-Field Variation in Sample Size
  - Postulate a normal distribution



-

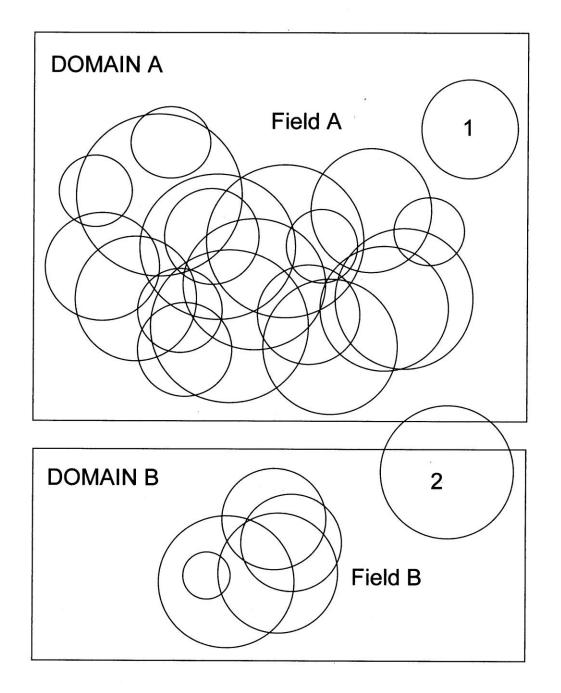
- Individual Samples from Domain Ideas
- Within-Field Variation in Sample Size
- Quasi-Random Combination of Ideas

- Individual Samples from Domain Ideas
- Within-Field Variation in Sample Size
- Quasi-Random Combination of Ideas
  - Variable degrees of constraint depending on nature of domain
    - Scientific revolutionaries vs. normal scientists
    - Paradigmatic vs. nonparadigmatic scientists
    - Scientists vs. artists

- Individual Samples from Domain Ideas
- Within-Field Variation in Sample Size
- Quasi-Random Combination of Ideas
- Variation in Quality of Combinations

- Individual Samples from Domain Ideas
- Within-Field Variation in Sample Size
- Quasi-Random Combination of Ideas
- Variation in Quality of Combinations
  - Differential fitness with respect to scientific criteria (facts, logic, etc.)
  - Small proportion publishable, an even smaller proportion high impact

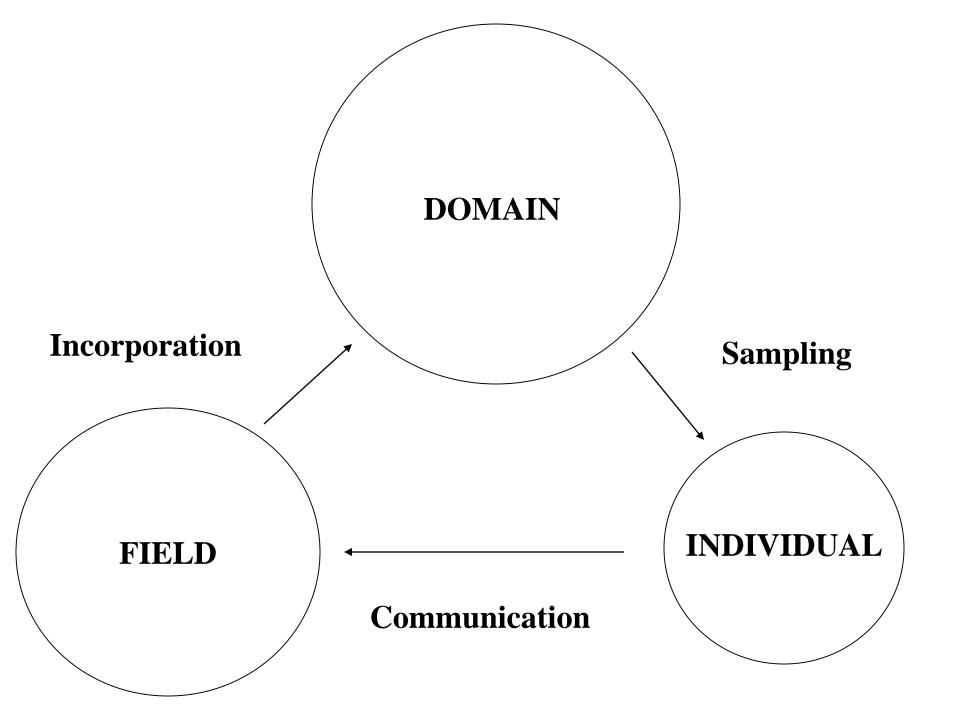
- Individual Samples from Domain Ideas
- Within-Field Variation in Sample Size
- Quasi-Random Combination of Ideas
- Variation in Quality of Combinations
- Variation in Size of Fields



-

- Individual Samples from Domain Ideas
- Within-Field Variation in Sample Size
- Quasi-Random Combination of Ideas
- Variation in Quality of Combinations
- Variation in Size of Fields
- Communication of Ideational Combinations

- Individual Samples from Domain Ideas
- Within-Field Variation in Sample Size
- Quasi-Random Combination of Ideas
- Variation in Quality of Combinations
- Variation in Size of Fields
- Communication of Ideational Combinations
  - If accepted, then incorporation into the domain pool, completing the cycle



### **Communication-Incorporation:**

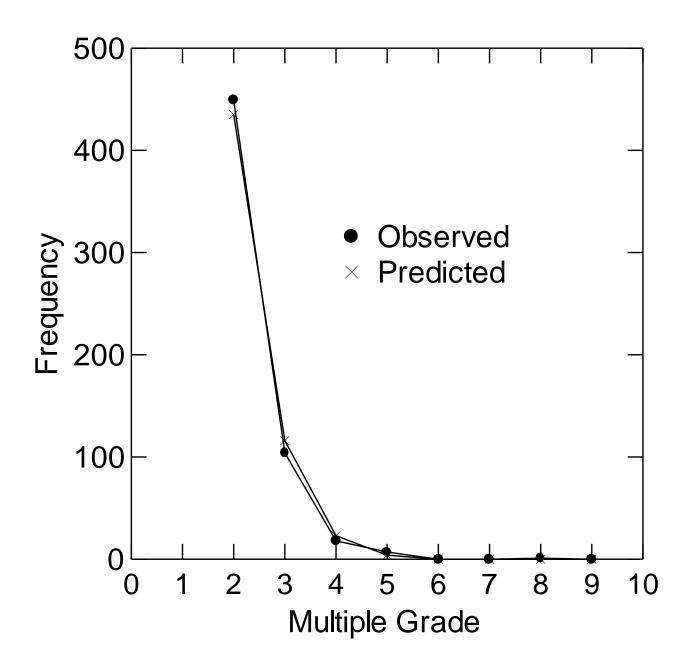
- Rate increases with speed of
  - Communication practices (journals vs. books; least-publishable units)
  - Gate-keeping procedures (peer review; editorial policies)
  - Publication lags (1st- vs. 2nd-tier journals)
  - Diffusion to secondary sources (introductory texts, popularizations, etc.)
- Hence, variation across time and discipline

Research Publications

 Cross-sectional Variation
 Longitudinal Change

Implications

Multiple Discoveries
 – Multiple Grades



#### Multiple Discoveries

- Multiple Grades
  - Variation across time and discipline
- Temporal Separation
  - Variation across time and discipline

- Multiple Discoveries
  - Multiple Grades
  - Temporal Separation
  - Multiples Participation

#### Multiple Discoveries

- Multiple Grades
- Temporal Separation
- Multiples Participation
  - Number of ideational combinations
  - Number of overlapping domain samples

- Multiple Discoveries
  - Multiple Grades
  - Temporal Separation
  - Multiples Participation
  - Multiple Identity

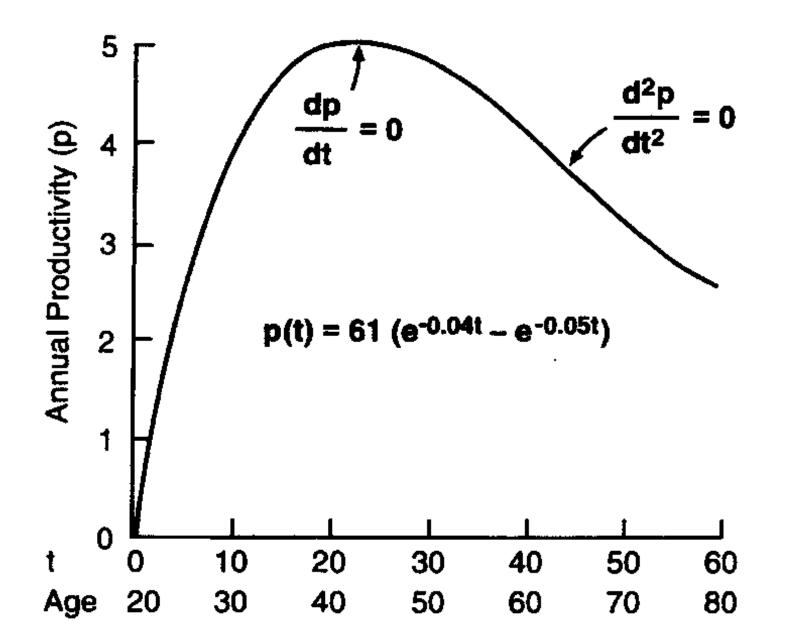
### Elaboration

- Aggregated Data on Career Output
  - Aggregated Across Time Units
  - Aggregated Across Scientists
- Cognitive Combinatorial Model
  - Two-step process
    - Ideation generates combinations
    - Elaboration generates communications
  - Individual differences in
    - Domain sample
    - Career onset

#### • $p(t) = abm(b-a)^{-1}(e^{-at}-e^{-bt})$

- where p(t) is ideational output at career age t (in years),
- e is the exponential constant (~ 2.718),
- a the typical ideation rate for the domain (0 < a < 1),
- -b the typical elaboration rate for the domain (0 < b < 1),
- *m* the individual's *creative potential* (i.e. maximum number of ideational combinations in indefinite lifetime).
- If a = b, then  $p(t) = a^2 m t e^{-at}$
- Number of communications  $T_{it}$  is proportional to  $p_i$ .
- Individual differences in
  - Creative potential (m)
  - Age at career onset (i.e., chronological age at t = 0)

Typical Career Trajectories



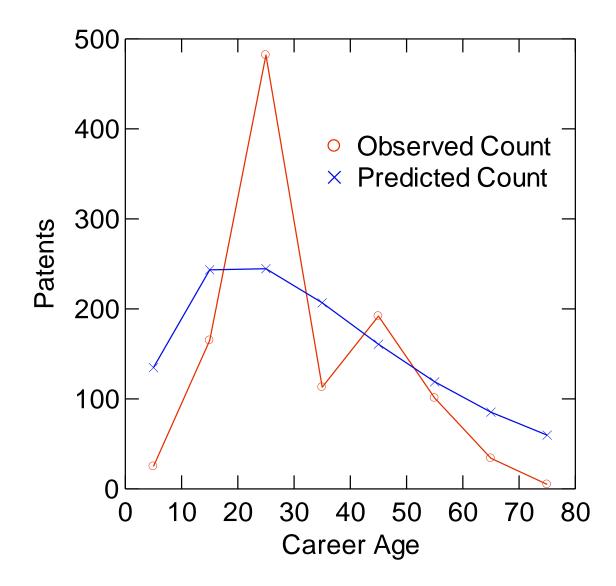
### N.B.

- The above curve has been shown to correlate in the mid- to upper-.90s for numerous data sets in which output information has been aggregated across many individual careers
- Yet even in the case of highly productive individuals, the predicted curve does reasonably well

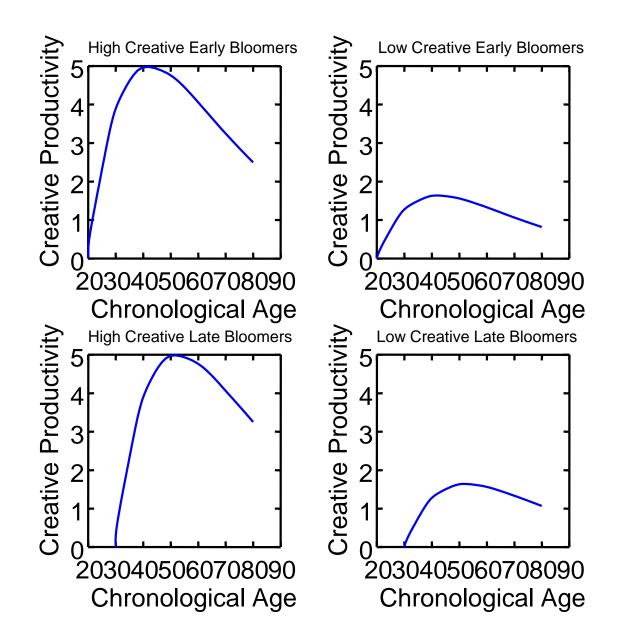
### e.g., the career of Thomas Edison

# $C_{Edison}(t) = 2595(e^{-.044t} - e^{-.058t})$

$$r = .74$$



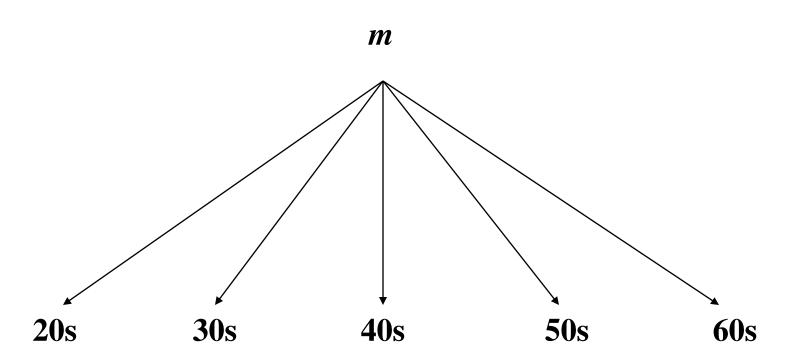
- Typical Career Trajectories
- Individual Differences in Trajectories
  - Fourfold Typology
    - High versus Low Creative Potential
    - Early versus Late Age at Career Onset



### **Specific Prediction**

- Individual differences in output across consecutive age periods (5- or 10-year units) for scientists with same age at career onset yields a specific pattern of correlations across those units, namely one most consistent with
  - a single-factor model, rather than
  - an autoregressive (simplex or quasisimplex) model.

#### **Single-Factor Model**

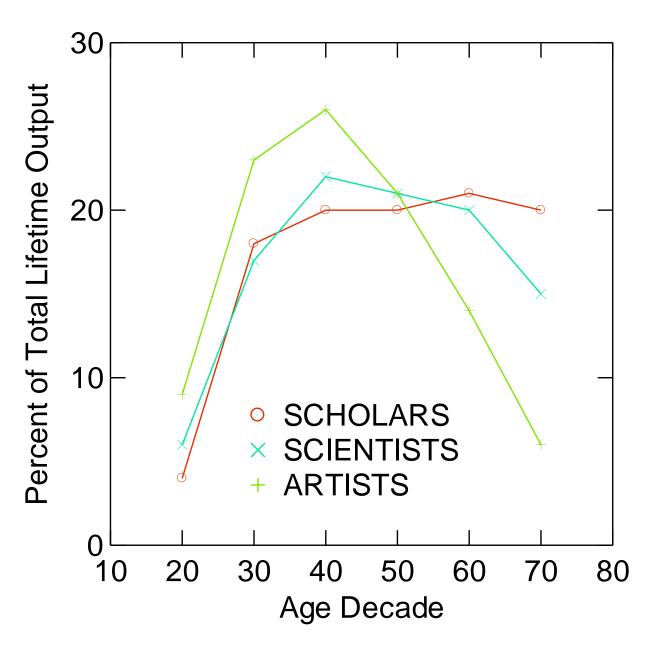


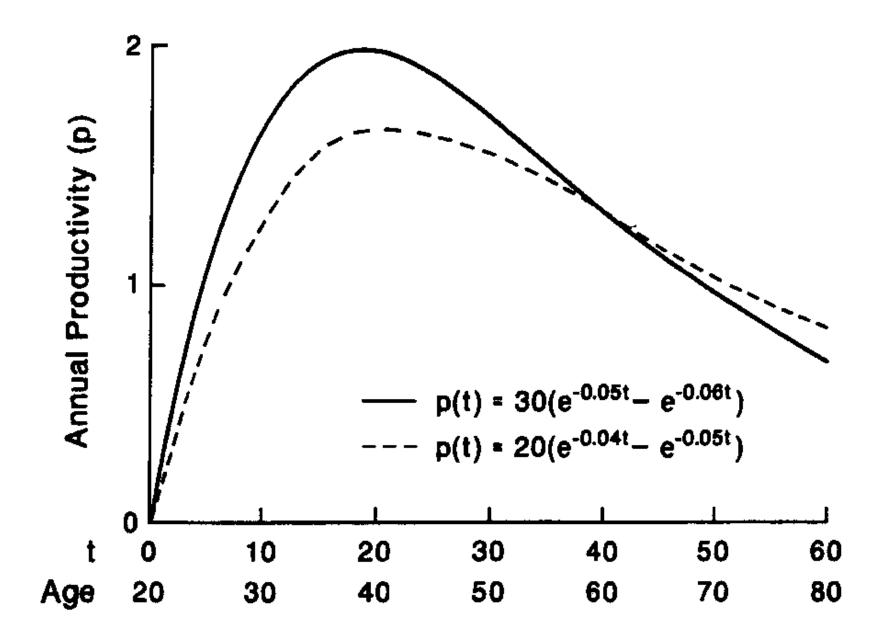
**Autoregressive Model** 

 $20s \longrightarrow 30s \longrightarrow 40s \longrightarrow 50s \longrightarrow 60s$ 

Former single-factor model already confirmed on distinct data sets (e.g., there is no tendency for the correlations between two age periods to decline as a function of the temporal separation between the two periods; i.e., no decline with distance from matrix diagonal)

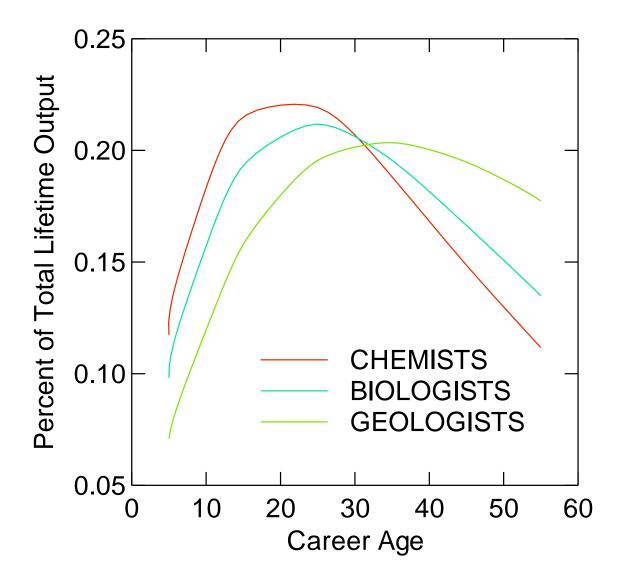
- Typical Career Trajectories
- Individual Differences in Trajectories
- Domain Variation in Trajectories





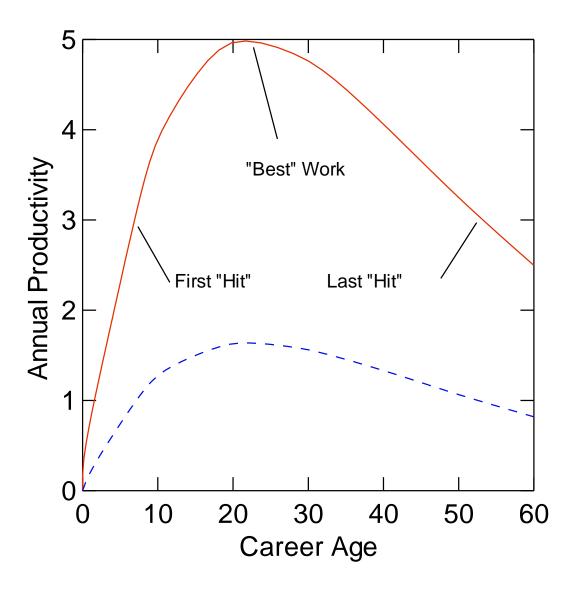
### Estimates for Three Disciplines

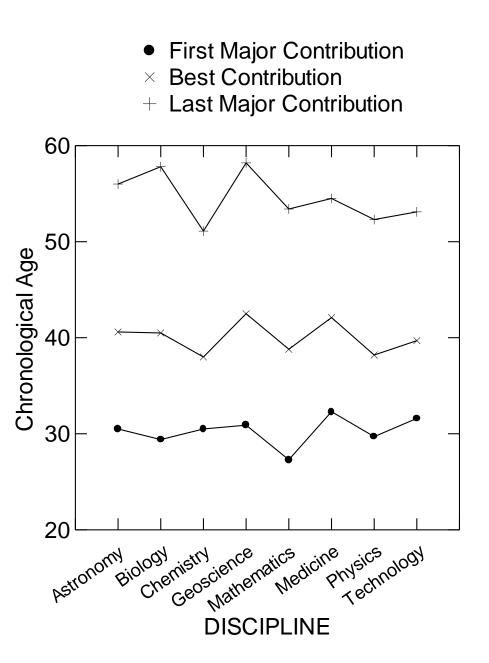
|            |      |      | Peak<br>Age | Peak<br>Age        |               |
|------------|------|------|-------------|--------------------|---------------|
| Domain     | а    | b    | Career      | Chrono<br>-logical | Half-<br>life |
| Chemists   | .042 | .057 | 20.4        | 40.4               | 16.5          |
| Biologists | .033 | .052 | 23.9        | 43.9               | 21.0          |
| Geologists | .024 | .036 | 33.8        | 53.8               | 28.9          |



# Implications

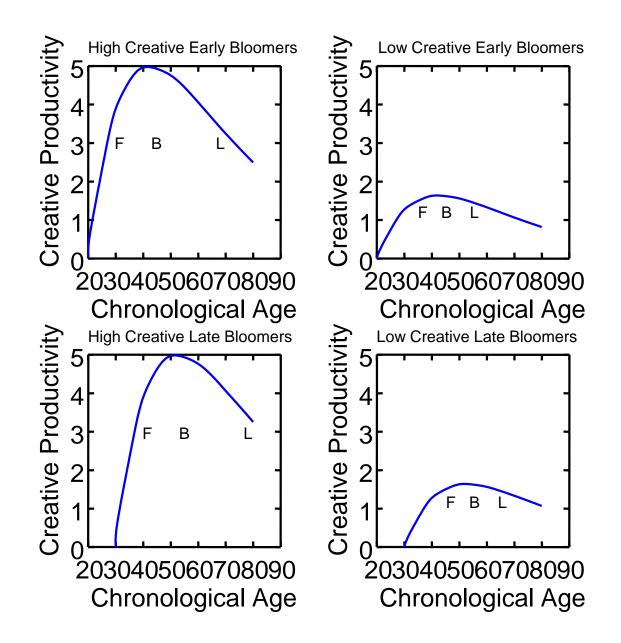
- Typical Career Trajectories
- Individual Differences in Trajectories
- Domain Variation in Trajectories
- Placement of Career Landmarks
  - Across domains





# Implications

- Typical Career Trajectories
- Individual Differences in Trajectories
- Domain Variation in Trajectories
- Placement of Career Landmarks
  - Across domains
  - Across individuals



- Given the above, it is possible to derive predictions regarding the pattern of correlations among
  - the ages of the three career landmarks (F, B, L),
  - the age at maximum output rate (x),
  - final lifetime productivity (T),
  - the maximum output rate (X), and
  - the time lapse or delay (*d*) between career onset and first career landmark (i.e., preparation period)
- In particular ...

- 1A: Total lifetime productivity correlates
  - negatively with the chronological age of the first contribution ( $r_{TF} < 0$ ) and
  - positively with the chronological age of the last contribution ( $r_{TL} > 0$ ).

- IB: Maximum output rate correlates
  - negatively with the chronological age of the first contribution (r<sub>XF</sub> < 0) and</li>
  - positively with the chronological age of the last contribution ( $r_{XL} > 0$ ).

- 2A: Total lifetime productivity correlates
  - zero with the chronological age at the maximum output rate ( $r_{Tx} = 0$ ) and
  - zero with the chronological age at the best contribution ( $r_{TB} = 0$ ).

- 2B: Maximum output rate correlates
  - zero with the chronological age at the maximum output rate ( $r_{Xx} = 0$ ) and
  - zero with the chronological age at the best contribution ( $r_{XB} = 0$ ).

- 3A: The chronological age at the maximum output rate correlates positively with both
  - the chronological age at the first contribution ( $r_{xF} > 0$ ) and
  - the chronological age at the last contribution ( $r_{xL} > 0$ ).

- 3B: The chronological age of the best contribution correlates positively with both
  - the chronological age at the first contribution (r<sub>FB</sub> > 0) and
  - the chronological age at the last contribution ( $r_{BL} > 0$ ).

- 4: The first-order partial correlation between the ages of first and last contribution is negative after partialling out either
  - the chronological age at the best contribution (r<sub>FL.B</sub> = r<sub>FL</sub> r<sub>FB</sub>r<sub>LB</sub> < 0) or</li>
  - the chronological age at the maximum output rate ( $r_{FL.x} = r_{FL} r_{Fx}r_{Lx} < 0$ )

- 5: The time interval between the chronological age at career onset and the chronological age at first contribution is negatively correlated with both
  - total lifetime productivity ( $r_{Td} < 0$ ) and
  - the maximum output rate ( $r_{Xd} < 0$ ).

#### Discussion

- Foregoing predictions unique to the combinatorial model
  - That is, they cannot be generated by alternative theories (e.g., cumulative advantage, human capital)
- Furthermore, all predictions have been confirmed on several independent data sets

### Discussion

- Moreover, if we assume that eminence (E) is highly correlated with lifetime productivity (*r<sub>ET</sub>* >> 0), then we obtain additional predictions:
- Eminence correlates
  - negatively with the age of the first contribution ( $r_{EF} < 0$ ),
  - positively with the age of the last contribution ( $r_{EL} > 0$ ),
  - zero with the age at the maximum output rate  $(r_{Ex} = 0)$ ,
  - zero with the age at the best contribution ( $r_{EB} = 0$ ), and
  - negatively with the time interval between the age at career onset and the age at first contribution ( $r_{Ed} < 0$ )
- These predictions also empirically confirmed

Integration: Combinatorial Process Emerges from ...

- Creative Scientists
- Research Programs
- Research Collaborations
- Peer Review
- Professional Activities
- Individual-Field-Domain Effects

 $-dI/dt = \gamma IN$ 

## Conclusion

- Because combinatorial models work so well with respect to scientific creativity
- (and because they have been extended successfully to non-scientific creativity),
- they seem to provide a valid baseline for gauging other explanations.
- Hence the next question: What other processes or variables add an increment to the variance already explained by combinatorial models?