Is Fame Fickle, Fleeting, Fluff?

The Reliability and Validity of Individual Differences in Eminence

Introduction

- Questions
- Origins
- Applications
- Objections
- Illustrations
- Conclusions

Introduction: Questions

- Do individual differences in eminent reputation have any psychological utility?
- Are they reliable?
- Are they valid?

Introduction: Questions

 Or, was Dante correct when he said "Worldly renown is naught but a breath of wind, which now comes this way and now comes that, and changes name because it changes quarter"?

Introduction: Origins

- First use as a psychological variable: Francis Galton's (1869) operational definition of genius in terms of reputation both contemporaneous and posthumous, viz.
- "the opinion of contemporaries, revised by posterity ... the reputation of a leader of opinion, of an originator, of a man to whom the world deliberately acknowledges itself largely indebted."
- Used as an indicator of "genius," the latter including creativity, leadership, and even sports

Introduction: Applications

- Historiometric:
 - Cox (1926) etc.
- Psychometric:
 - IPAR (UC Berkeley) etc.

Introduction: Objections

- Unreliable? Riddled with too much error to assess anything?
- Invalid? Does it measure anything psychologically meaningful?

Reliability

- Internal Consistency of Composite Measures
- Temporal Stability of Consecutive Measures

Reliability: Internal Consistency

- Correlations: Alternative measures exhibit positive and nontrivial intercorrelations
- Coefficients: Alpha reliabilities of composite measures are uniformly high
- Factors: Multiple indicators can be adequately fitted by a single-factor model (Galton's G) with only sporadic and minor method effects (e.g., "difficulty factors")

Reliability: Temporal Stability

- "Test-Retest" Correlations
 - Moderate to large
- Latent-Variable Models
 - Single-factor (Galton's G) rather than quasisimplex (autoregressive)

Validity

- Substantive Correlates
- Methodological Issues

Validity: Substantive Correlates

- Behavioral (e.g., productivity)
- Cognitive (e.g., latent inhibition)
- Dispositional (e.g., motivation)
- Developmental (e.g., expertise acquisition)
- Social (e.g., disciplinary networks)

Validity: Methodological Issues

- Eminence measures are contaminated with certain biases, especially those that can be described as
 - demographic (birth year, ethnicity, gender)
 - ideological (liberal versus conservative)
 - attributional (fundamental attribution error)
 - distributional (skewed with long upper tail)

Validity: Methodological Issues

- Yet these biases
 - are usually small, sometimes even trivial, relative to the entire variance, and
 - can be considerably reduced if not completely obliterated via
 - measurement strategies
 - data transformations
 - statistical controls

Illustrations

Illustrations

- Simonton, D. K. (1991e). Latent-variable models of posthumous reputation: A quest for Galton's *G. Journal of Personality and Social Psychology*, *60*, 607-619.
- Simonton, D. K. (1998a). Achieved eminence in minority and majority cultures: Convergence versus divergence in the assessments of 294 African Americans. *Journal of Personality and Social Psychology*, *74*, 804-817.
- Simonton, D. K. (1998c). Fickle fashion versus immortal fame: Transhistorical assessments of creative products in the opera house. *Journal of Personality and Social Psychology*, 75, 198-210

Table 1

Goodness-of-Fit Statistics for Two Galtonian Models Tested on Eight Data Sets

Data	NFI	NNFI	PFI	CFI	x ²	dſ	p
Presidents							
Model a	1.000	1.000	.750	1.000	37.459	27	.087
Model b	1.000	1.000	.722	1.000	35.624	26	.099
Philosophers							
Model a	.984	.980	.765	.984	1,043.602	35	.001
Model b	.992	.990	.750	.992	528.308	34	.001
Artists					0201000	21	
Model a	.994	.993	.861	.994	1,552.065	104	.001
Model b	.995	.994	.856	.995	1,327.098	102	.001
Composers					1,527.070	102	.001
Model a	.988	.981	.593	.989	172.848	9	.001
Model b	.996	.994	.531	.997	53.250	8	.001
Composers					55.250	0	.001
Music histories				•			
Model a	1.000	.999	.600	1.000	32.605	9	.001
Model b	1.000	.999	.533	1.000	32.502	8	.001
Music encyclopedias					52.502	0	.001
Model a	.897	.840	.538	.904	108.433	9	.001
Model b	.917	.857	.489	.924	86.898	8	.001
General encyclopedias				• • • • •	00.070	0	.001
Model a	1.000	1.000	.600	1.000	16.893	9	.050
Model b	1.000	1.000	.467	1.000	9.725	9 7	.205

Note. Presented are the Bentler-Bonett (1980) normed (NFI) and nonnormed (NNFI) fit indexes, the parsimonious fit index (PFI), the comparative fit index (CFI), and the chi-square test. For presidents, N = 28; for philosophers, N = 2,012; for artists, N = 772; for composers, Ns = 696 and 92.

Correlation Matrix and Standardized Structural Coefficients: 772 Artists							
<u>m</u> i 1 2 3 4 5	6 7 8 9 10 11 12	13 14 15 16					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.00 .56 1.00 .53 .59 1.00 .63 .47 .45 1.00 .59 .43 .40 .78 1.00 .76 .50 .43 .75 .65 1.00 .76 .50 .47 .64 .61 .87 1.00 .72 .46 .43 .72 .60 .83 .72 .69 .48 .44 .67 .58 .75 .70 .68 .50 .48 .79 .67 .72 .66 .69 .55 .49 .68 .61 .67 .61	1.00 .89 1.00 .72 .71 1.00 .73 .70 .74 1.00					
<u>m</u> 1 = .627 <u>G</u> + .779 <u>e</u> 1	Bentler-Bonett Normed Fit Index	= 0.995					
<u>m</u> 2 = .777 <u>G</u> + .629 <u>e</u> 2	Bentler-Bonett Nonnormed Fit Inde	x = 0.994					
<u>m</u> 3 = .942 <u>G</u> + .337 <u>e</u> 3	Parsimonious Fit Index	= 0.846					
<u>m</u> 4 = .889 <u>G</u> + .458 <u>e</u> 4	Chi-Square (<u>df</u> = 34)	= 1326.922					
<u>m</u> 5 = .903 <u>G</u> + .430 <u>e</u> 5	Probability Value for Chi-Square	= .001					
<u>m</u> ₆ = .889 <u>G</u> + .457 <u>e</u> ₆							
<u>m</u> 7 = .625 <u>G</u> + .781 <u>e</u> 7	Correlation between \underline{e}_1 and \underline{e}_2	= .693					
<u>m</u> g ≡ .564 <u>G</u> + .825 <u>e</u> g	Correlation between \underline{e}_7 and \underline{e}_8	= .348					
<u>m</u> g = .929 <u>G</u> + .369 <u>e</u> g							
$\underline{m}_{10} = .834 \ \underline{G} + .551 \ \underline{e}_{10}$							
<u>m₁₁ = .960 <u>G</u> + .280 <u>e</u>11</u>							
$\underline{m}_{12} = .924 \ \underline{G} + .383 \ \underline{e}_{12}$							
$\underline{m}_{13} = .962 \ \underline{G} + .271 \ \underline{e}_{13}$							
$\underline{m}_{14} = .949 \ \underline{G} + .316 \ \underline{e}_{14}$							
$\underline{m}_{15} = .892 \ \underline{G} + .452 \ \underline{e}_{15}$							
$\underline{m}_{16} = .860 \ \underline{G} + .510 \ \underline{e}_{16}$							

	Explo	Confirmatory		
Measure	1	2	1	2
African-American Almanac	.69	.23	.87	.00
Encyclopedia of African-American Culture & History	.93	.00	.90	.00
Chronology of African-American History	.29	.48	.74	.00
Timelines of African-American History	.57	.26	.80	.00
African Americans: Voices of Triumph	.61	13	.50	.00
African Americans: A Portrait	.63	05	.56	.00
Pictorial History of African Americans	.97	29	.70	.00
Encyclopaedia Britannica	03	.82	.00	.81
Encyclopedia Americana	.10	.80	.00	.88
Academic American Encyclopedia	.10	.75	.00	.84
Collier's Encyclopedia	.33	.60	.00	.61
Encyclopedia of American Facts and Dates	20	.78	.00	.60
Timetables of American History	33	.99	.00	.69
Encyclopedia of American History	.08	.69	.00	.74
Reader's Companion to American History	.95	14	.00	.65
Cambridge Dictionary of American Biography	05	.79	.00	.74
USA: A Chronicle in Pictures	11	.86	.00	.78
Factor correlation	.7		.8	

Exploratory and Confirmatory Factor Analyses of Black and White Eminence Assessments

Table 1

Note. The exploratory analysis used principal axes with iteration of the communality estimates, followed by rotation of two factors via the Oblimin criterion ($\gamma = 0.5$). The confirmatory analysis used maximum-likelihood estimation (under the robust statistics option).

Table 2

	Black			White		
Predictor	b	SE _b	β	Ь	SE _b	β
Figures of the past	0.931	0.426	.14*	1.684	0.411	.26***
Civil rights activists	1.171	0.293	.25***	0.571	0.283	.12*
Black nationalists	0.925	0.361	.17*	0.584	0.349	.10
Organization leaders	0.379	0.279	.09	0.133	0.269	.03
Lawyers	-0.188	0.416	03	-0.870	0.402	12*
Government officials	-0.174	0.247	05	-0.170	0.239	05
Educators	-0.442	0.349	08	-0.727	0.337	13
Religious leaders	-0.203	0.391	03	-0.523	0.378	08
Creative writers	0.444	0.235	.13	0.569	0.227	.17*
Mass-media figures	0.256	0.385	.04	-0.328	0.372	05
Classical musicians	-0.499	0.285	11	-0.235	0.276	05
Blues and jazz musicians	-0.369	0.215	14	0.808	0.208	.30***
Gospel and soul musicians	0.519	0.341	.09	0.596	0.329	.11
Artists	0.000	0.326	00	-0.628	0.315	12*
Scientists	-0.590	0.309	13	-0.424	0.295	10
Athletes	-0.198	0.269	05	0.930	0.260	.24***
Miscellaneous leaders	-0.474	0.384	07	-0.853	0.371	13*
Gender	-0.051	0.148	02	-0.187	0.143	07
Birth year	0.002	0.002	.09	0.039	0.019	.17*
Living contemporary	-0.392	0.144	19**	-0.364	0.139	- .1 7 *
Famous firsts	0.220	0.053	.28***	0.193	0.051	.25***
Spingarn Award	0.434	0.157	.17**	0.460	0.152	.18**

Regression Analysis: Predictors of Eminence Assessments of 245 African Americans

Note. The foregoing predictors account for 36% of the variance $(R^2 = .36)$ in the Black measures and 40% of the variance $(R^2 = .40)$ in the White measures. The intercept for both equations defines the predicted eminence of performance artists, the comparison group for both regression equations. This intercept is -0.282 for the Black equation, and -0.422 for the White equation. *p < .05. **p < .01. ***p < .001.

Table 1Correspondence Between Contemporaryand Current Impact Measures

	Zero-order (Regression coefficient (β)		
Measure	Productions	Languages	Productions	Languages	
Recordings	.48	.37	.59	.48	
Videos	.46	.35	.52	.42	
Performances	.56	.46	.57	.47	
Dictionaries	.42	.31	.51	.40	
Histories	.37	.24	.53	.38	
Rankings	.31	.21	.43	.33	
Global success	.46	.35	.56	.44	

Note. All zero-order correlations and standardized partial regression coefficients are statistically significant at the p < .001 level or better. The regression coefficients have the effects of performance date and libretto language partialed out. N = 496.

Figure 2. Generational fluctuations in the magnitude of the correlation between the current evaluation (according to the global-success measure) and the contemporary reception according to two separate measures (productions and languages). The data points are fitted with a spline curve.

Conclusions: Eminence assessments

- are reliable both across measures and across time
- are valid in the sense that they capture individual differences in behavioral, cognitive, personality, and developmental variables
- yet they usually require the introduction of corrections to remove or control for various biases and contaminants

Or as Thomas Carlyle once said, "Fame, we may understand, is no sure test of merit, but only a probability of such."

but with the addition that this probability is reasonably high, as high was holds for most other individual-difference instruments