

Is Psychological Science a STEM Discipline?

Field Attributes

and

Researcher Characteristics

Introduction

- The recognized importance of the STEM disciplines (NSF/NRC):
 - Science
 - Technology
 - Engineering
 - Mathematics

Introduction

- Where does psychology fit in?
- Is psychology a science?
- If so, what kind of science?
- How can we address these questions?
- Can we provide scientific answers?

Introduction

- Two approaches to a scientific answer:
 - Use objective and quantified variables to compare the *field* of psychology with other fields both scientific and non-scientific
 - Use objective and quantified variables to compare the *researchers* in the field of psychology with the researchers in other fields both scientific and non-scientific
- I start with the first approach ...

Field Attributes

- Raw scores from the following data sources:
 - Cole (1983): disciplinary consensus and citation immediacy (5 measures)
 - McDowell (1982): obsolescence rate
 - Suls & Fletcher (1983): consultation rate
 - Smith et al. (2000): graph prominence
 - Roeckelein (1997): theories/laws ratio
 - Schachter et al. (1991): lecture disfluency
 - Smith et al. (2000): rated "hardness"
 - Ashar & Shapiro (1990): paradigmatic development
- Transformed into z scores (M = 0, SD = 1)

Consensus on Evaluating Scientists (Cole, 1983):

- Physics
- Chemistry
- Biochemistry
- Psychology
- Sociology

- 1.5
- 0.3
- -0.1
- -0.7
- -1.0

Note: Higher score indicates higher peer-evaluation consensus; here and throughout red arrows indicate gaps ≥ 0.5 SD

Consensus on Which Scientists Have Contributed the Most in Past Two Decades (Cole, 1983):

- Physics
- Biochemistry
- Sociology!
- Chemistry
- Psychology

- 1.5
- 0.5
- -0.3
- -0.7
- -1.0

Note: Higher scores indicate higher peer-evaluation consensus

Concentration of Citations to Research Articles (Cole, 1983):

- Physics
- Psychology!
- Chemistry!
- Mathematics!
- Sociology

- 0.9
- 0.4
- 0.2
- -1.1
- -1.1

Note: Higher scores indicate higher citation concentration; here and throughout red brackets indicate gaps ≤ 0.1 SD

Citation Immediacy Effects (Cole, 1983):

- Biochemistry
- Chemistry
- Psychology!
- Geology
- Physics
- Mathematics!

- 1.4
- 0.5
- 0.3
- -0.2
- -0.6
- -1.5

Note: Higher scores indicate greater citation immediacy

Proportion of Scientists under 35 Whose Work Received More than the Mean Number of Citations for their Field (Cole, 1983):

- Geology
- Chemistry
- Physics
- Psychology
- Sociology
- Mathematics!

- 1.5
- 0.6
- 0.2
- 0.1
- -1.0
- -1.2

Note: Higher scores indicate that younger scientists are cited more

Relative Costs of Interrupted Careers (McDowell, 1982):

- Physics
- Chemistry
- Sociology!
- Psychology
- Biology!
- History
- English

- 1.5
- 0.8
- 0.2
- 0.1
- -0.2
- -1.1
- -1.3

Note: Higher scores indicate faster rates of knowledge obsolescence (based on 1-year disruption in productivity)

Mean Number of Acknowledgements (Suls & Fletcher, 1983):

- Chemistry
- Physics
- Psychology
- Sociology

- 0.8 • 0.7
- -0.2
- -1.3

Note: Higher scores indicate *lower* collegial consultation

Graph Prominence (Cleveland, 1984; Smith et al., 2000):

- Chemistry
- Physics
- Biology
- Medicine
- Psychology
- Economics
- Sociology

- 1.3
- 1.1
- 0.5
- 0.1
- -0.3
- -1.0
- -1.3

Note: Higher scores indicate higher graph prominence

Theories-to-Laws Ratios of Textbooks (Roeckelein, 1997):

- Physics
- Chemistry
- Biology
- Anthropology?
- Psychology
- Sociology

- 1.1
- 0.9
- 0.1
- 0.0
- -0.4
- -1.7

Note: Higher scores indicate *lower* ratio of theories to laws

Uhs per Minute During Lectures (Schachter et al., 1991):

- Biology
- Mathematics
- Chemistry
- · Philosophy!
- Psychology
- Economics
- Sociology
- Political science
- Art history
- English

- 1.0
- 0.9
- 0.73
- 0.72
- 0.6
- 0.3
- -0.3
- -1.1
- -1.3
- -1.6

Note: Higher score indicates lower speech disfluency

Rated Disciplinary Hardness (Smith et al., 2000)

- Physics
- Chemistry
- Biology
- Medicine
- Psychology
- Economics
- Sociology

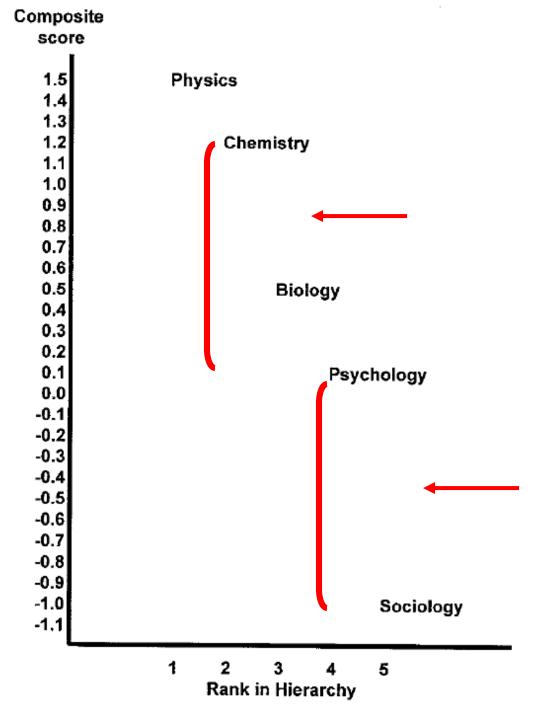
- 1.2
- 0.9
- 0.5
- 0.1
- -0.3
- -0.8
- -1.6

Note: Higher scores indicate higher rated hardness

Ashar & Shapiro (1990)

- Indicators of paradigm development:
 - "(1) The average length in words of dissertation abstracts in each field, computed from a random sample of twenty-five dissertation abstracts per field"
 - "(2) The average length in pages of dissertations in each field, computed from a random sample of twenty-five dissertations per field"
 - "(3) the length of chain of prerequisite courses in each field taken from the University Catalogue" (UoW)
- First two are inverse indicators (reverse scored)

Score on Paradigm Development (Ashar & Shapiro, 1990):


- Astronomy
- Physics
- Chemistry
- Biology
- Mathematics
- Psychology
- Economics
- Sociology
- Philosophy
- Anthropology
- Political science

- 1.7
- 1.4
- 1.30
- 1.33
- 1.2
- 0.8
- 0.2
- -0.4
- -0.8
- -0.9
- -1.2

Notes: Higher scores indicate higher paradigm development

Field Attributes: Conclusions

- Psychology's exact placement varies according to the criterion applied
- Yet psychology generally seems closer to the natural sciences than to the human sciences
- This proximity was indicated earlier by Simonton (2004) using a 7-composite indicator derived from a subset of the previous measures:

Researcher Characteristics

- Development
- Disposition

Researcher Characteristics

Development

Developmental Variables

- Father's occupation
- Birth order
- Education

Roe (1952, 1953): 64 Eminent Scientists

- Sample
 - Three categories:
 - 22 physicists (theoretical and experimental)
 - 20 biologists
 - 22 social scientists:
 - 8 anthropologists
 - 14 psychologists: The latter include
 - Gordon Allport, Jerome Bruner, J.P. Guilford,
 Harry Harlow, Ernest Hilgard, Karl Lashley,
 Carl Rogers, Robert Sears, B. F. Skinner, and
 S. S. Stevens

% Professional Fathers (Roe, 1952, 1953)

- Theoretical physicists
- Experimental physicists
- Psychologists
- Biologists
- Anthropologists

- 84%
- 50%
- 50%
- 45%
- 38%

Birth order (Roe, 1953)

Position	Psych	Anthro	Phys/Chem
1	43%	62%	67%
2	21%	25%	18%
3	14%	0	2%
4	21%	0	0
5	0	0	5%
6	0	13%	2%
7	0	0	5%

See also ...

- Eminent scientists more likely firstborns (Chambers, 1964; Clark & Rice, 1984; Eiduson, 1962; Galton, 1874; cf. Feist, 1993),
- Eminent literary creators more likely laterborns (Bliss, 1970; Clark & Rice, 1984; cf. Schubert, Wagner, & Schubert, 1977)
- Eminent psychologists are more likely firstborns (Gupta, Gilbert & Pierce, 1983; Helmreich et al., 1980; Simonton, 2008; Terry, 1989), and the
- Preponderance increases with eminence and with gender (Chambers, 1964; Helson & Crutchfield, 1970; Simonton, 2008)

Education (Roe, 1952, 1953): Age at Bachelors / Doctorate

- Physical scientists
- Psychologists
- Biologists
- Anthropologists

- 20.9 / 24.6
- 21.4 / 25.8
- 21.8 / 26.0
- 22.1 / 28.6

Researcher Characteristics

Disposition

Disposition

- Intelligence
- Personality

Roe (1952, 1953): 64 Eminent Scientists

- Measures
 - Intelligence: verbal, spatial, and mathematical
 - devised by Educational Testing Service
 - converted to IQs in Simonton (2002, Table 6.3)

Roe (1952): 64 Eminent Scientists - Verbal Intelligence

- Theoretical physicists
- Anthropologists
- Psychologists
- Biologists
- Experimental physicists

- 168 (158-177)
- 165 (150-175)
- 163 (133-176)
- 162 (138-176)
- 154 (121-174)

Roe (1952): 64 Eminent Scientists - Spatial Intelligence

- Theoretical physicists
- Psychologists
- Experimental physicists
- Biologists
- Anthropologists

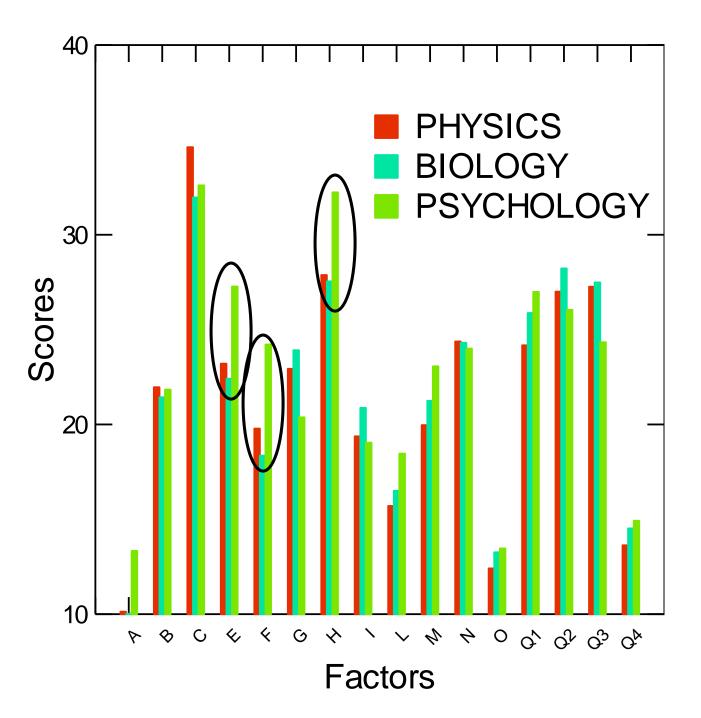
- 149 (149-161)
- 141 (127-161)141 (123-161)
- 137 (123-164)
- 135 (123-151)

Roe (1952): 64 Eminent Scientists - Mathematical Intelligence

- Biologists
- Psychologists
- Anthropologists

- 165 (133-194)162 (139-194)
- 142 (128-154)

N.B.: Theoretical and experimental physicists did not take test


Cattell & Devdahl (1955): 144 Eminent Scientists

- Sample: Eminent researchers
 - 46 Physicists
 - 46 Biologists
 - 52 Psychologists
- Measure: 16 PF

TABLE 1

Mean 16 Personality Factor Profile of Eminent Researchers (N = 140) in Physics, Biology, and Psychology

Personality Dimension Label at Lower Pole	Mean Stens	Plotted Mean Sten Scores 1 2 3 4 5 6 7 8 9 10	Personality Dimension Label at Upper Pole
A - Schizothymia	3.36		Cyclothymia A+
B- Low intelligence	7.64		High intelligence B+
C- Low ego strength	5.44		High ego strength C+
E- Low dominance	6.62		High dominance E+
F- Desurgency	3.15		Surgency F+
G- Low group superego	4.10		High group superego G+
H - Threctia	6.01		Parmia H+
I – Harria	7.05		Premsia I+
L- Low protension	5.36		High protension L+
M - Praxernia	5.36		Autia M+
N - Simplicity	5.50		Shrewdness N+
0 - Low guilt proneness	4.38		High guilt proneness O+
Q ₁ - Conservatism	7.00		Radicalism Q ₁ -
Q ₂ - Low self-sufficiency	7.52	$\ldots \ldots \rangle$	High self-sufficiency Q2-
Q ₃ - Low self-sentiment	6.44	/	High self-sentiment Q3-
Q ₄ - Low ergic tension	4.91		High ergic tension Q4-

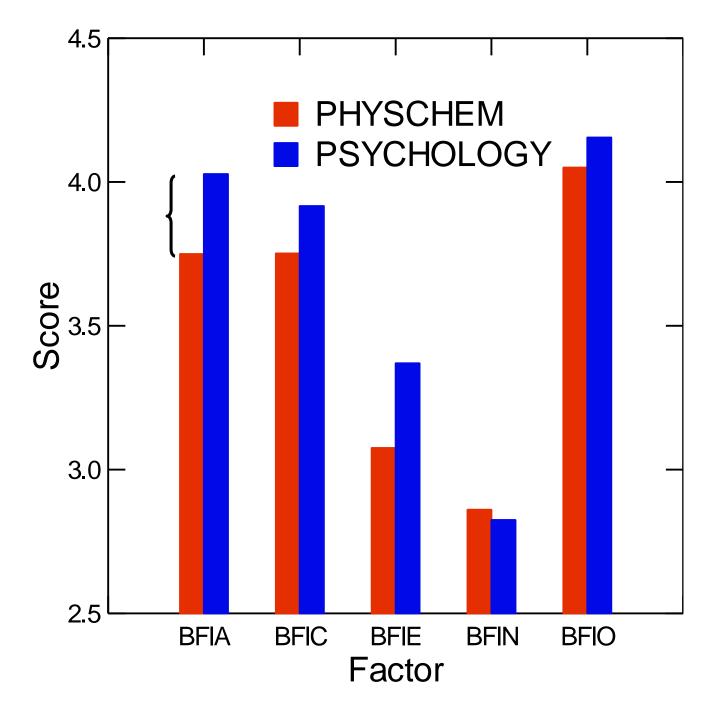
Cattell & Devdahl (1955): 144 Eminent Scientists

- Psychologists higher in dominance (E), surgency (F), and social boldness (H; Parmia)
- Cattell's (1963) conclusion: "the psychologists, I regret to say, [are] more dominant and less desurgent. Possibly this greater surgency accounts for the fact that on the whole psychologists have talked more and progressed less than, say, physicists!" (p. 126)
- Alternative interpretation: "things" versus "persons" orientation (cf. Galton, 1874)

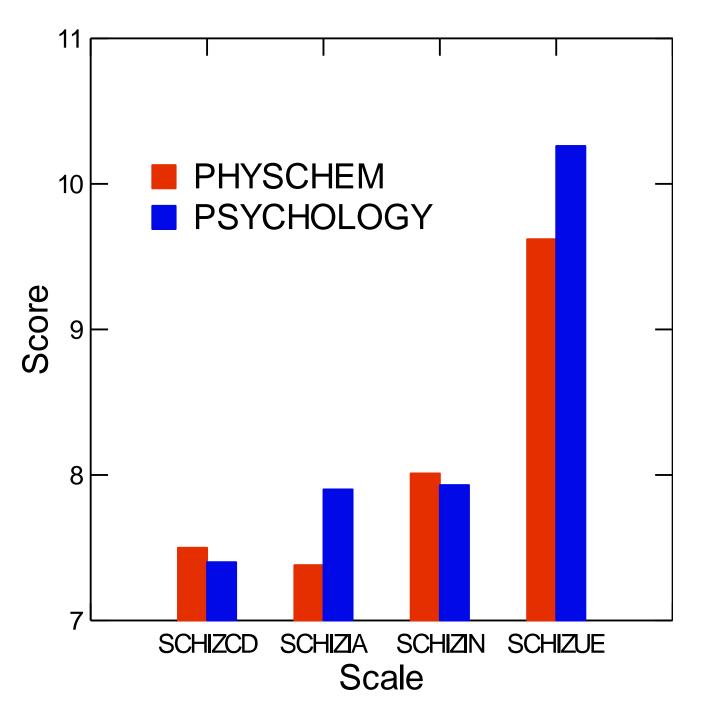
Chambers (1964): 225 Chemists/213 Psychologists

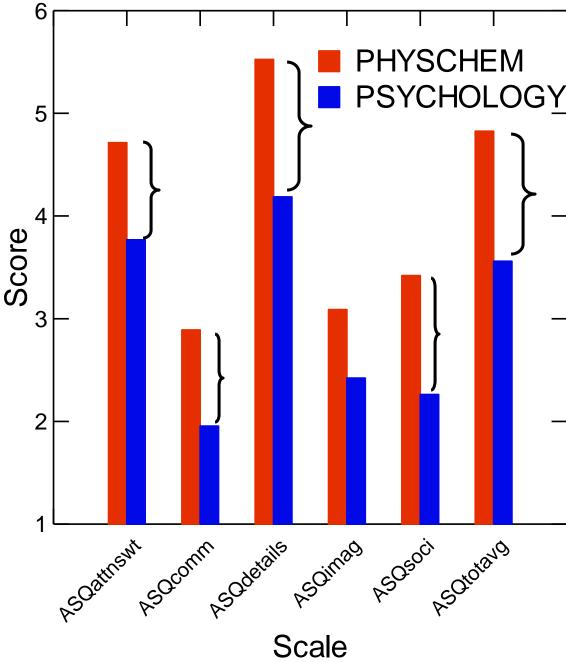
Measures

- Cattell 16 PF Questionnaire:
 - E: Dominance versus Submission
 - F: Enthusiasm and Cheerfulness versus Seriousness and Introspectiveness)
 - H (Adventurousness versus Timidity)
 - M (Creativity versus Conventional Outlook)
 - Q₂ (Self-Suficiency versus Group Dependency)
- Initiative measure, Ghiseli's Self-Description Inventory
- Security-Insecurity Inventory
- Biographical Inventory


Chambers (1964): 225 Chemists/213 Psychologists

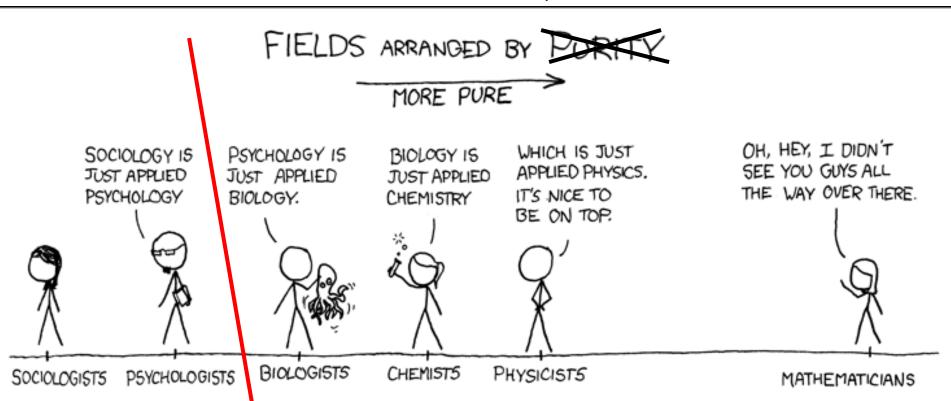
Results:


- Mostly non-significant differences
- Exceptions:
 - "Psychologists more Bohemian, introverted, unconventional, imaginative and creative in thinking and behavior" (M)
 - "Psychologists more socially oriented"
 - "Psychologists more rebellious against parents"
- Moreover, highly eminent scientists in both disciplines tended to be highly similar


Feist et al. (in progress)

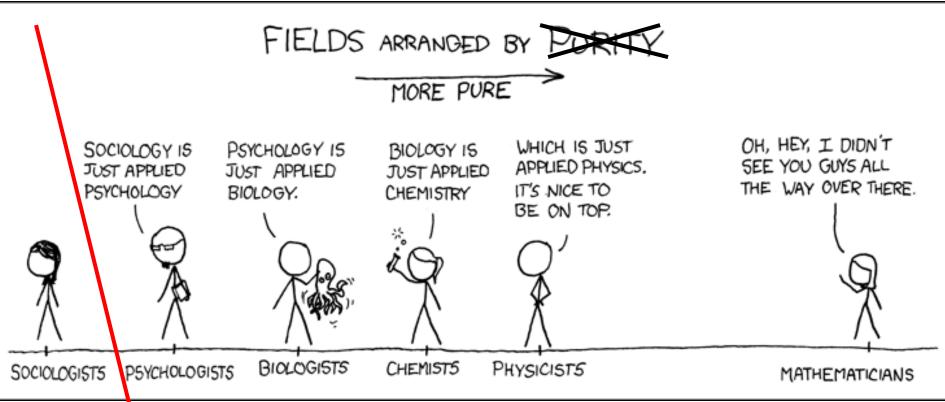
- Sample: US full-time tenured or tenuretrack researchers at research universities
 - ≤ 44 in Psychology
 - ≤ 104 in Physics/Chemistry
- Measures:
 - Big Five Inventory
 - EPQ (Eysenck Personality Questionnaire)
 - O-LIFE-Schizotypy Test
 - Autism Spectrum Quotient

Two General Conclusions


- First, as a *field*, psychological science often compares favorably with STEM disciplines;
 - Overall, psychology's placement is closer to the biological sciences than to the social sciences, such as sociology, political science, and even economics
 - This affinity likely reflects psychology's genuine ties with biology, most notably, via evolutionary theory, genetics, and the neurosciences

Two General Conclusions

- Second, as researchers, psychologists compare favorably with scientists in STEM disciplines regarding both developmental and dispositional variables
- i.e., both are "cut from the same cloth" (with the the things-vs-people proviso)
- Hence, ...



STEMness

STEMness

