

Little-c creativity, Big-C Creativity

Formal Definitions and Implications

What is creativity?

The Problem:

- Can research on creativity be productive without consensus on what it entails?
- □ In particular, what is a "creative idea"?
- Can we really study creative talent or its development without knowing what counts as a creative idea?
- After all, the product, person, and process perspectives on creativity all depend on what counts as a creative idea

Past reviews and discussions

- Plucker, Beghetto, & Dow (2004)
- □ Runco & Jaeger (2012)
- □ Simonton (2012)
- □ Piffer (2012)

Four critical questions:

- What are the assessment criteria?
- □ How are the assessments scaled?
- □ How are the assessments integrated?
- Who makes the assessments?

What are the assessment criteria?

Two-criterion definitions

- Some variation on
 - novel or original, and
 - useful, adaptive, or functional
- But I would argue that "novelty" conflates "originality" with "surprise"
- If we split the concept into two, then we get a three-criterion definition: originality, utility, and surprise

What are the assessment criteria?

- Three-criterion definitions
 - US Patent Office:
 - new, useful, and nonobvious
 - Boden (2004):
 - novel, valuable, and surprising
 - Amabile (1996):
 - novel
 - appropriate, useful, correct, or valuable
 - heuristic rather than algorithmic

How are the assessments scaled?

- □ Qualitative? Yes/No?
- Quantitative? Numbers?
 - Ordinal? Ranks?
 - Interval? Continuous?
 - Ratio? Zero point?
 - Proportion or probability? 0-1?
 - □ My preference for latter

How are the assessments integrated?

- Additive?
- Multiplicative?
 - Why the latter > former
 - □ The reinvented wheel?
 - □ The bank safe made out of soap bubbles?

Who makes the assessments?

□ The individual?

- "little-c creativity"
- "P-creative" (Boden, 2004)

The field?

- Big-Creativity"
- "H-creative" (Boden, 2004)
- Hence, need for individual- and fieldlevel definitions

Given k ideas $x_1, x_2, x_3, \dots x_i, \dots x_k$, how do we gauge their creativity?

□ Three parameters:

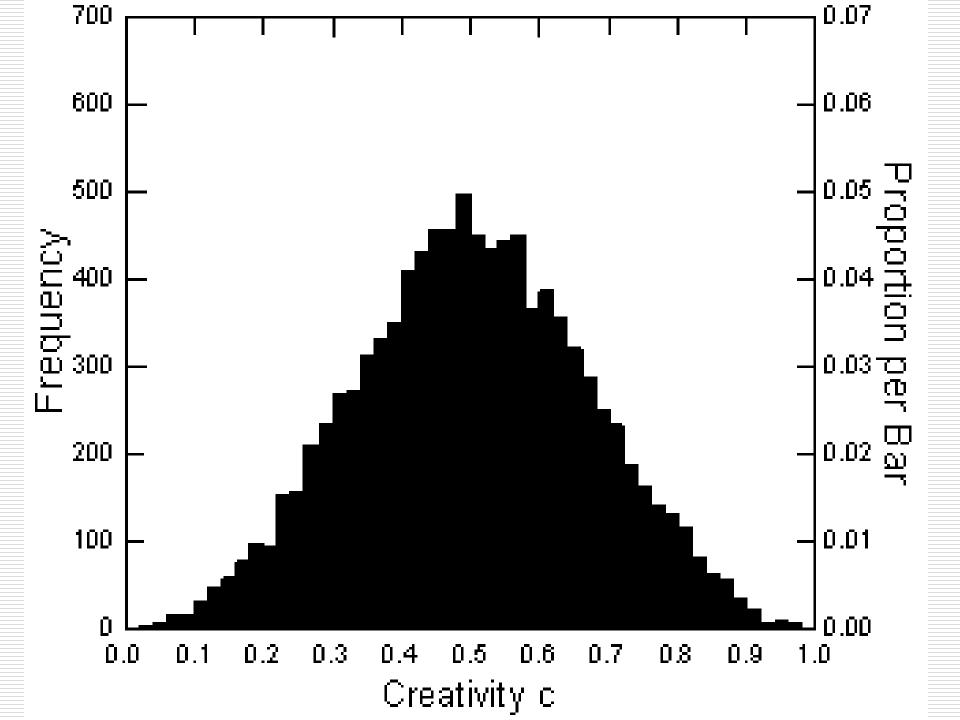
- personal probability p_i,
 - $\square \text{ where } 0 \leq p_i \leq 1$
- personal utility u_i,
 - \Box where $0 \leq u_i \leq 1$
- personal obviousness v_i,
 - \Box where $0 \leq v_i \leq 1$

- N.B.: p_i =0 only when idea x_i is not initially available to the individual without entering an "incubation period"
- An serendipitous priming stimulus initiates the "spreading activation" that eventually yields p_i >0

□ Hence, a eureka or aha! experience

Derived parameters

- personal originality $(1 p_i)$, □ where $0 \le (1 - p_i) \le 1$
- personal surprisingness $(1 v_i)$,
 □ where $0 \le (1 v_i) \le 1$
- □ Therefore, *personal creativity*


$$c_i = (1 - p_i)u_i(1 - v_i),$$

 \Box where $0 \le c_i \le 1$


literally "little-c" creativity

Two significant implications

- First Whereas in the
 - Additive model personal creativity has normal distribution, in the
 - Multiplicative model personal creativity has skewed distribution ... as in ...

versus

Two significant implications

Second –

- □ The necessity for BVSR creativity,
- i.e., blind variation and selective retention (Campbell, 1960; Simonton, 1985-2013)
- That is, ideas that are highly sighted cannot be creative whereas highly blind ideas can vary greatly in creativity, requiring a selection-retention procedure to winnow out the wheat from the chaff

To demonstrate ...

Two significant implications

Second –

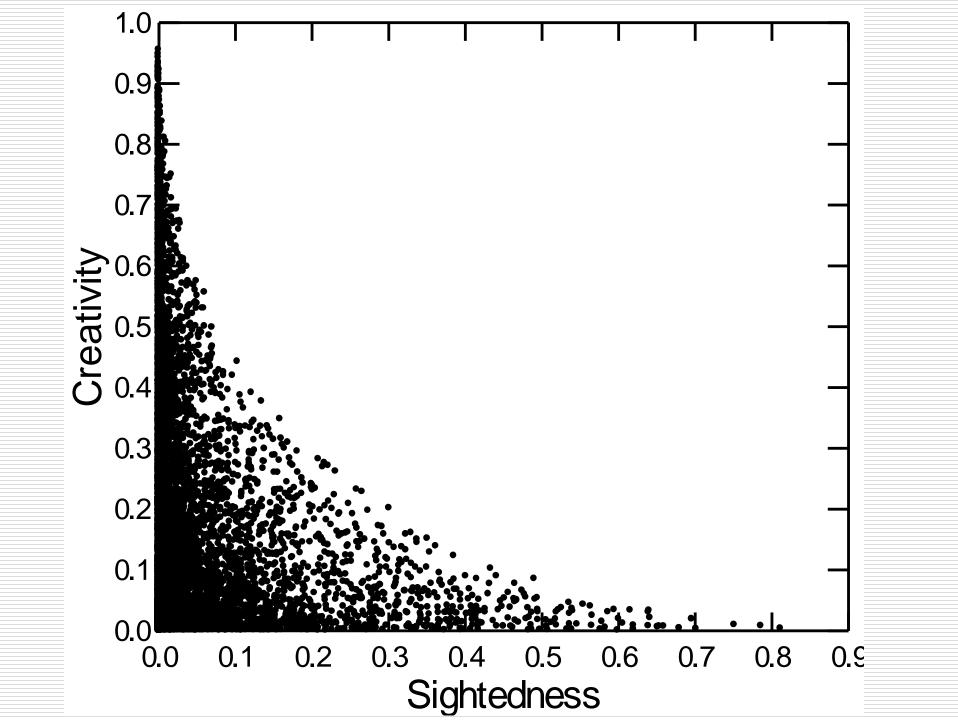
 \Box The sightedness of x_i is given by

• $s_i = p_i u_i v_i$, where $0 \le s_i \le 1$

- i.e., an idea is highly sighted to the degree that it is highly probable, highly useful, and highly probable because it is already known to be highly useful
- The sightedness of the entire set of k ideas is given by $S = 1/n \Sigma s_i$, where $0 \le S \le 1$

Two significant implications

Second –


Hence, it follows that

- the *blindness* of x_i is given by $b_i = 1 s_i$
- and the *blindness* of the entire set of k ideas is given by B = 1 S.
- Concentrating on single ideas, note that

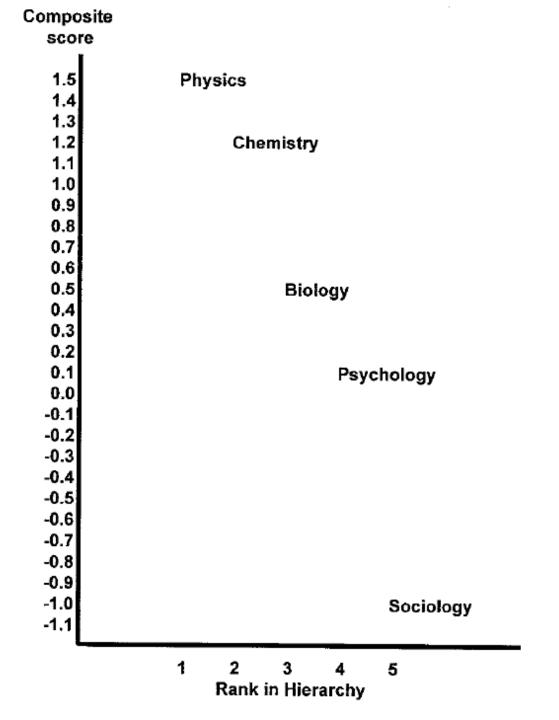
as $b_i \rightarrow 0$, $c_i \rightarrow 0$; but that

• as $b_i \rightarrow 1$, then max- $c_i \rightarrow 1$ but $\sigma_c^2 \rightarrow 1$

viz. the following scatter plot ...

Now time to switch to

Big-C Creativity


- Csikszentmihályi's (1990) systems perspective
 - Domain "the parameters of the cultural symbol system" (p. 190)
 - Field "individuals who know the domain's grammar of rules and are more or less loosely organized to act as gatekeepers to it" (p. 201)

□ Field size = n (including the individual), ■ where 250 ≤ n ≤ 600 (Wray, 2010)

- If M_j identifies the jth field member:
 P_i = 1/n Σ p_{ji}, = consensual probability
 U_i = 1/n Σ u_{ji}, = consensual utility
 V_i = 1/n Σ v_{ji}, = consensual obviousness; and
 - C_i = 1/n ∑ c_{ji}, = consensual creativity,
 □ or literally its "Big-C" creativity
- where all values are positive decimals ranging from 0 to 1

Yet given that the consensual parameters are averages we must define the following variances: $\sigma^2(p) = 1/n \Sigma (p_{ii} - P_i)^2,$ $\bullet \sigma^2(u) = 1/n \Sigma (u_{ii} - U_i)^2,$ • $\sigma^2(v) = 1/n \Sigma (v_{ii} - V_i)^2$, and $\sigma^{2}(c) = 1/n \Sigma (c_{ii} - C_{i})^{2}$ where all variances range from 0 to 1

Hence, crucial distinction among High-consensus fields where $\Box \ \sigma^2(p) \approx \sigma^2(u) \approx \sigma^2(v) \approx \sigma^2(c) \approx 0,$ Medium-consensus fields where $\Box \sigma^2(p) \approx \sigma^2(u) \approx \sigma^2(v) \approx \sigma^2(c) \approx .5$, and Low-consensus fields where $\Box \ \sigma^2(p) \approx \sigma^2(u) \approx \sigma^2(v) \approx \sigma^2(c) \approx 1$ To illustrate, in the sciences ...

- Hence, crucial distinction between
 - High-consensus fields where
 - $\label{eq:sigma_2} \Box \ \sigma^2(p) \approx \sigma^2(u) \approx \sigma^2(v) \approx \sigma^2(c) \approx 0,$
 - Medium-consensus fields where
 - $\Box \sigma^2(p) \approx \sigma^2(u) \approx \sigma^2(v) \approx \sigma^2(c) \approx .5$, and
 - Low-consensus fields where
 - $\Box \ \sigma^2(p) \approx \sigma^2(u) \approx \sigma^2(v) \approx \sigma^2(c) \approx 1$
- These variances are absolutely critical in calibrating the relation between little-c and Big-C creativity!

- □ Assume idea x_i was created by individual M_1
- □ Hence, the contrast is between c_{1i} and C_i
- Although the latter includes the former, any part-whole bias shrinks as n increases or as σ²(c) decreases

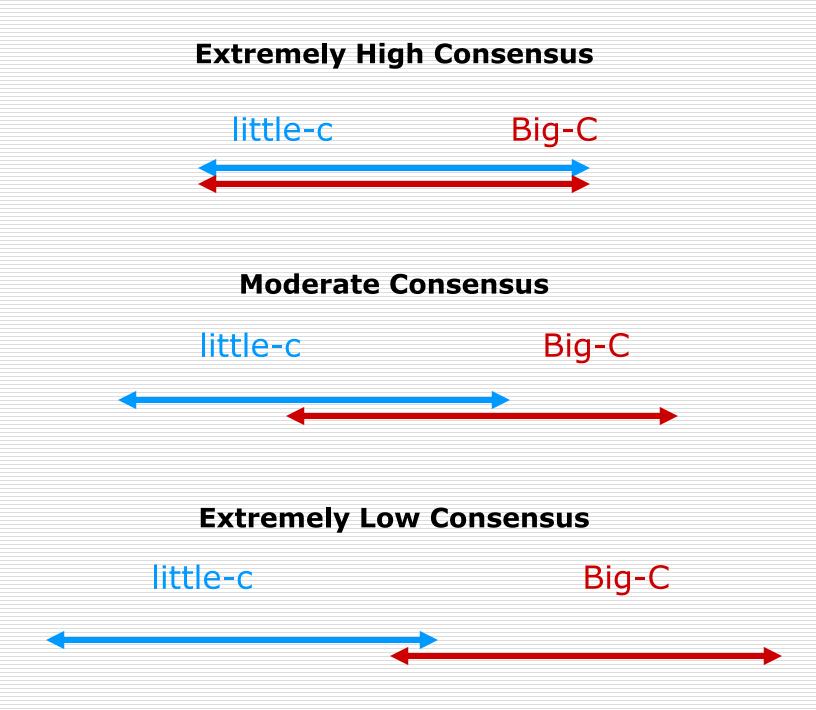
- Creativity evaluations in high- versus low-consensus fields
 - High-consensus fields
 - \square $P_i \approx p_{1i}, U_i \approx u_{1i}, V_i \approx v_{1i}, and C_i \approx C_{1i}$
 - "neglected genius" extremely rare

- Creativity evaluations in high- versus low-consensus fields
 - Low-consensus fields
 - \Box Case 1: $C_i > c_{1i}$ ("attributed talents")
 - \Box Case 2: $C_i < c_{1i}$ ("neglected geniuses")
 - $\Box Case 3: C_i \approx c_{1i}$
 - Individual M₁ "typical" of field
 - $C_i \approx c_{1i}$ does *not* imply that $P_i \approx p_{1i}$, $U_i \approx u_{1i}$, and $V_i \approx v_{1i}$ except when $C_i \approx c_{1i} \approx 1$

- Personal versus consensual creativity measurement in low-consensus fields
 - As $\sigma^2(c) \rightarrow 1$, then a large proportion of the field would arrive at the value $c_{ji} = 0$ $(j \neq 1)$
 - Moreover, increased difficulty of calibrating the transition from "little-c" to "Big-C" creativity
 - e.g., the CAQ (Carson, Peterson, & Higgins, 2005):

H. Scientific Discovery

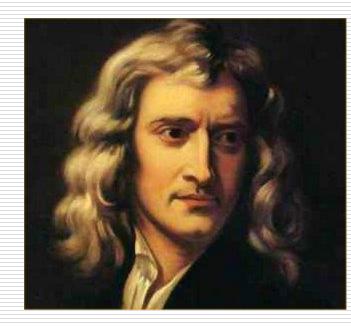
- __0. I do not have training or recognized ability in this field (Skip to Theater
- __1. I often think about ways that scientific problems could be solved.
- __2. I have won a prize at a science fair or other local competition.
- __3. I have received a scholarship based on my work in science or medicine.
- __4. I have been author or coauthor of a study published in a scientific journal.
- *___5. I have won a national prize in the field of science or medicine.
- *__6. I have received a grant to pursue my work in science or medicine.
 - __7. My work has been cited by other scientists in national publications.

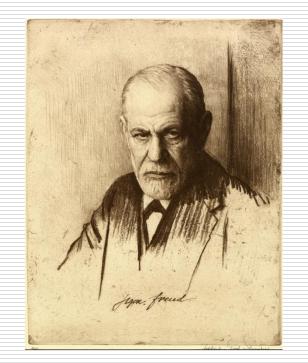

E. Creative Writing

- __0. I do not have training or recognized talent in this area (Skip to Humor).
- 1. I have written an original short work (poem or short story).
- __2. My work has won an award or prize.
- __3. I have written an original long work (epic, novel, or play).
- __4. I have sold my work to a publisher.
- ____5. My work has been printed and sold publicly.
- __6. My work has been reviewed in local publications.
- *___7. My work has been reviewed in national publications.

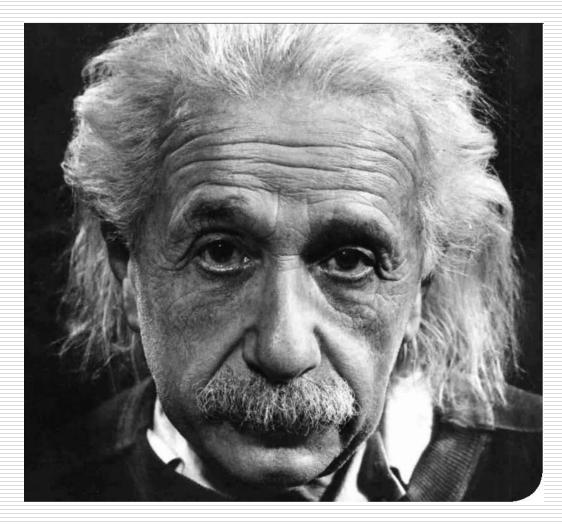
Two Implications

🗆 First –


Big-C creativity is not just a simple quantitative extension of little-c creativity, but represents a distinct set of field assessments that may or may not dovetail with those operating at the individual level



Two Implications


Second –

- Creative talent and its development must differ for
 - high-consensus versus low-consensus fields, and
 - □ little-c versus Big-C creativity
- □ Or stated more visually ...

ALBERT EINSTEIN

VS

Robert Einstein

