

BVSR ≠ Buffy Vampire Slayer Relationships

Creative Problem Solving as Variation-Selection:

The Blind-Sighted Continuum and Solution Variant Typology

Background

- Donald T. Campbell's (1960) BVSR model of creativity and discovery
- Controversies and confusions
- Need for a formal
 - variant typology
 - blind-sighted metric
- expressed in terms of creative problem solving (to keep discussion simple)

- Given problem:
 - Goal with attainment criteria
 - For complex problems: subgoals with their separate attainment criteria
 - Goals and subgoals may form a goal hierarchy
 - e.g., writing a poem: the composition's topic or argument, its length and structure, meter or rhythm, rhyme and alliteration, metaphors and similes, and the best word for a single place that optimizes both sound and sense (cf. Edgar Allan Poe's 1846 "The Philosophy of Composition")

- Solution variants:
 - two or more alternative solutions or parts of solutions
 - algorithms, analogies, arrangements, assumptions, axioms, colors, conjectures, corollaries, definitions, designs, equations, estimates, explanations, expressions, forms, formulas, harmonies, heuristics, hypotheses, images, interpretations, media, melodies, metaphors, methods, models, narratives, observations, parameters, patterns, phrasings, plans, predictions, representations, rhymes, rhythms, sketches, specifications, start values, statistics, structures, techniques, terms, themes, theorems, theories, words, etc.
 - depending on nature of problem

- Creative solution (Boden, 2004; USPTO): – novel (or original)
 - useful (or functional, adaptive, or valuable)
 - surprising (or "nonobvious")
 - innovations, not adaptations
 - inventions, not improvements
 - productive, not reproductive thought

• Variant parameters: *X* characterized by:

– generation probability: *p*

- solution utility: *u* (probability or proportion)
 - probability of selection-retention
 - proportion of *m* criteria actually satisfied
- selection expectation: v (i.e., the individual's implicit or explicit knowledge of the utility and therefore likely selection and retention)

k Hypothetical Solution Variants

Solution	Probability	Utility	Expectation
X_1	p_1	u_1	v ₁
X_2	p_2	u_2	v_2
<i>X</i> ₃	p_3	u ₃	v ₃
	•••	• • •	•••
X_i	p_i	<i>u</i> _i	v _i
	•••	• • •	•••
X_k	p_k	u_k	v_k

 $0 \le p_i \le 1, 0 \le u_i \le 1, 0 \le v_i \le 1$

Solution Variant Typology

Туре	p_i	u _i	v _i	Generation	Prospects	Prior knowledge
1	> 0	> 0	> 0	likely	true positive	utility known
2	> 0	> 0	= 0	likely	true positive	utility unknown
3	> 0	= 0	= 0	likely	false positive	utility unknown
4	> 0	= 0	> 0	likely	false positive	utility known ¹
5	= 0	> 0	> 0	unlikely	false negative	utility known
6	= 0	> 0	= 0	unlikely	false negative	utility unknown
7	= 0	= 0	= 0	unlikely	true negative	utility unknown
8	= 0	= 0	> 0	unlikely	true negative	utility known ²

¹To avoid confirmation bias ²Often resulting from prior BVSR trials

Two Special Types

• Reproductive Type 1:

 $-p_i = u_i = v_i = 1$

- i.e., low novelty, high utility, low surprise
- BVSR unnecessary because variant
 "frontloaded" by *known* utility value
- Selection becomes mere "quality control" to avoid calculation mistakes or memory slips
- But also routine, even algorithmic thinking, and hence not creative

Two Special Types

- Creative Type 2:
 - $-p_i \neq 0$ but $p_i \approx 0$ (high novelty)
 - $-u_i = 1$ (high utility)
 - $-v_i = 0$ or $v_i \approx 0$ (high surprise)
 - BVSR mandatory to distinguish from Type 3
 - Because the creator *does not know* the utility value, must generate and test
 - Hence, innovative, inventive, productive, or creative thinking

Quantitative Creativity Measure

- $c_i = (1 p_i)u_i(1 v_i)$
- where $0 \le c_i < 1$
- $c_i \rightarrow 1$ as
 - $-p_i \rightarrow 0$ (maximizing novelty),
 - $-u_i \rightarrow 1$ (maximizing utility), and
 - $-v_i \rightarrow 0$ (maximizing surprise)
- $c_i = 0$ when $p_i = 1$ and $v_i = 1$ regardless of u_i
- perfectly productive variant $p_i = u_i = v_i = 1$

Quantitative Creativity Measure

• Less extreme examples:

 $-p_i = 0.100, u_i = 1.000, v_i = 0.100, c_i = 0.810$ $-p_i = 0.100, u_i = 0.500, v_i = 0.100, c_i = 0.405$

- Individualistic vs. collectivistic cultures:
 - $-p_1 = 0.001$ and $u_1 = 0.500$ (novelty > utility) $-p_2 = 0.500$ and $u_2 = 1.000$ (novelty < utility) - letting $v_1 = v_2 = 0$ $-c_1 \approx 0.500$ (or .4995, exactly) $-c_2 = 0.500$

Blind-Sighted Continuum

- Goal: a measure for any set of *k* variants
- Blind-sighted metric: Start with Tucker's $\boldsymbol{\phi}$
 - $-\phi_{pu} = \langle \mathbf{p}, \mathbf{u} \rangle / \langle \mathbf{p}, \mathbf{p} \rangle^{1/2} \langle \mathbf{u}, \mathbf{u} \rangle^{1/2}, \text{ or }$
 - $\varphi_{pu} = \sum p_i u_i / (\sum p_i^2 \sum u_i^2)^{1/2}$ over all k variants
- $0 \le \phi \le 1$
 - If .85-.94, then factors/pcs reasonably alike
 - If $\phi > .95$, then factors/pcs equal (Lorenzo-Seva & ten Berge, 2006)
- But we will use φ^2 , where $0 \le \varphi^2 \le 1$

- For k = 2
 - If $p_1 = 1$, $p_2 = 0$, $u_1 = 1$, $u_2 = 0$, $\varphi_{pu}^2 = 1$ • i.e., perfect sightedness ("perfect expertise") - If $p_1 = 1$, $p_2 = 0$, $u_1 = 0$, $u_2 = 1$, $\varphi_{pu}^2 = 0$ • i.e., perfect blindness ("bad guess") If $p_1 = 1$, $p_2 = 0$, $u_1 = 1$, $u_2 = 1$, $\varphi_{pu}^2 = 0$
 - If $p_1 = .5$, $p_2 = .5$, $u_1 = 1$, $u_2 = 0$, $\varphi_{pu}^2 = .5$
 - midpoint on blind-sighted continuum
 - e.g., fork-in-the-road problem

- For $k \ge 2$
 - Equiprobability with only one unity utility
 - $p_i = 1/k$
 - $\varphi_{pu}^2 = (1/k)^2/(1/k) = 1/k$
 - φ_{pu}^2 yields the average per-variant probability of finding a useful solution in the *k* variants
 - Therefore ...

- k = 2, $\phi_{pu}^{2} = .500$ (given earlier);
- k = 3, $\varphi_{pu}^2 = .333$;
- k = 4, $\varphi_{pu}^2 = .250$;
- k = 5, $\phi_{pu}^2 = .200$;
- k = 6, $\varphi_{pu}^2 = .167$;
- k = 7, $\phi_{pu}^2 = .143$;
- k = 8, $\phi_{pu}^2 = .125$;
- k = 9, $\varphi_{pu}^2 = .111$;
- k = 10, $\varphi_{pu}^2 = .100$; etc.

- For $k \ge 2$
 - Equiprobability with only one zero utility
 - *k* = 4
 - $p_1 = p_2 = p_3 = p_4 = .25, u_1 = 0, u_2 = u_3 = u_4 = 1$
 - $\varphi_{pu}^2 = .75$ (i.e., average probability of solution 3/4)
 - N.B.: $\sqrt{.75} = .87 \approx .85$ minimum for Tucker's φ
- Hence, the following partitioning ...

Four Sectors

- First: Effectively blind $-.00 \le \varphi_{pu}^2 \le .25 = Q_1 (1^{st} \text{ quartile})$
- Second: Mostly blind but partially sighted $-.25 < \varphi_{pu}^2 \le .50 = Q_2 (2^{nd} \text{ quartile})$
- Third: Mostly sighted but partially blind $-.50 < \varphi_{pu}^2 \le .75 = Q_3 (3^{rd} \text{ quartile})$
- Fourth: Effectively sighted

-
$$.75 < \varphi_{pu}^{2} \le 1.0$$

- "pure" sighted if $\varphi_{pu}^{2} > .90 \approx .95^{2}$

Connection with Typology

- φ_{pu}^{2} tends to increase with more variant Types 1 and 2 (ps > 0 and us > 0)
- φ_{pu}^2 always decreases with more variant Types 3 and 4 (*ps* > 0 and *us* = 0)
- φ_{pu}^{2} always decreases with more variant Types 5 and 6 (ps = 0 and us > 0)
- φ_{pu}^2 neither increases nor decreases with variant Types 7 and 8 (ps = 0 and us = 0)

Selection Procedures

- External versus Internal
 - Introduces no complications
- Simultaneous versus Sequential
 - Introduces complications

Sequential Selection

- Need to add a index for consecutive trials to allow for changes in the parameter values:
- $p_{1t}, p_{2t}, p_{3t}, \dots p_{it}, \dots p_{kt}$
- $u_{1t}, u_{2t}, u_{3t}, \dots u_{it}, \dots u_{kt}$
- $v_{1t}, v_{2t}, v_{3t}, \dots v_{it}, \dots v_{kt}$
- where t = 1, 2, 3, ... n (number of trials)
- Then still, $0 \le \varphi_{pu}^2(t) \le 1$, but
- $\varphi_{pu}^{2}(t) \rightarrow 1$ as $t \rightarrow n$ (Type 3 to Type 8)

Caveat: Pro-Sightedness Bias

- Because φ_{pu}^{2} increases with Type 2 though $v_{i} = 0$, it could reflect chance concurrences between **p** and **u**
 - e.g., lucky response biases
- Hence, superior measure would use

 $-\phi_{pw}^{2} = (\sum p_{i}w_{i}) / (\sum p_{i}^{2}\sum w_{i}^{2}),$

- where $w_i = u_i v_i$, and hence $\varphi_{pw}^2 < \varphi_{pu}^2$

• But v_i is seldom known, so ...

Concrete Illustrations

- Edison's "drag hunts"
- Picasso's horse sketches for *Guernica*
- Kepler's Third Law
- Watson's discovery of the DNA base pairs

Edison's "drag hunts"

- For lamp filaments, battery electrodes, etc.
- Incandescent filament utility criteria:
 - -(1) low-cost,
 - -(2) high-resistance,
 - (3) brightly glow 13¹/₂ hours, and
 - (4) durable

Edison's "drag hunts"

- Tested hundreds of possibilities:
 - 100 trial filaments: $\varphi_{pu}^2 \approx .01$ (1st percentile)

- 10 trial filaments: $\varphi_{pu}^2 \approx .1$ (1st decile)

- These two estimates do not require equiprobability, only *p*-*u* "decoupling"
- e.g., same results emerge when both p and u are vectors of random numbers with positively skewed distributions (i.e., the drag hunts are "purely blind")

Picasso's Guernica Sketches

- 21 horse sketches represent the following solution variants with respect to the head:
 - X_1 = head thrusting up almost vertically: 1, 2, and 3 (top)
 - X_2 = head on the left side, facing down: 4 and 20
 - X_3 = head facing up, to the right: 5, 6, 7, 8, 9, and 11
 - X_4 = head upside down, to right, facing down, turned left: 10, 12, and 13
 - X_5 = head upside down, to left, facing down, turned left: 15
 - X_6 = head upside down, to right, facing down, pointed right: 17
 - X_7 = head level, facing left: 3 (bottom), 18 (top), 18 (bottom), 28, and 29
- Yielding ...

Probabilities and Utilities

- $p_1 = 3/21 = .143$
- $p_2 = 2/21 = .095$
- $p_3 = 6/21 = .286$
- $p_4 = 3/21 = .143$
- $p_5 = 1/21 = .048$
- $p_6 = 1/21 = .048$
- $p_7 = 5/21 = .238$

- $u_1 = 0$
- $u_2 = 0$
- $u_3 = 0$
- $u_4 = 0$
- $u_5 = 0$
- $u_6 = 0$
- $u_7 = 1$

Picasso's Guernica Sketches

- Hence, $\varphi_{pu}^2 \approx .293$ (2nd sector, lower end)
- If complications are introduced, e.g.,
 - differentiating more horse variants so k > 7,
 - assuming that there are separate whole-part utilities,
- then $\phi_{pu}^{2} < .293$ (viz. 1st sector)

(Re)discovering Kepler's 3rd Law Systematic Search

- D^{1}/T^{1} $u_{1} = 0$
- D^{1}/T^{2} $u_{2} = 0$
- D^2/T^1 $u_3 = 0$
- D^2/T^2 $u_4 = 0$
- D^2/T^3 $u_5 = 0$
- D^3/T^2 $u_6 = 1$
- D^3/T^3 $u_7 = 0$

- $\varphi_{pu}^{2}(1) = .143$
- $\varphi_{pu}^{2}(2) = .167$
- $\varphi_{pu}^{2}(3) = .200$
- $\varphi_{pu}^{2}(4) = .250$
- $\varphi_{pu}^{2}(5) = .333$
- $\varphi_{pu}^{2}(6) = .500$
- Not tested

(Re)discovering Kepler's 3rd Law BACON's Heuristic Search

- D^{1}/T^{1} $u_{1} = 0$
- D^{1}/T^{2} $u_{2} = 0$
- D^2/T^1 $u_3 = 0$
- D^2/T^2 $u_4 = 0$
- D^2/T^3 $u_5 = 0$
- D^3/T^2 $u_6 = 1$
- D^3/T^3 $u_7 = 0$

- $\varphi_{pu}^{2}(1) = .143$
- $\varphi_{pu}^{2}(2) = .167$
- Not tested
- Not tested
- Not tested
- $\varphi_{pu}^{2}(6) = .500$
- Not tested

Watson's Discovery of the DNA Base Pairs

- Four bases (nucleotides):
 - two purines: adenine (A) and guanine (G)
 - two pyrimidines: cytocine (C) and thymine (T)
- Four variants:

$$-X_1 = A-A, G-G, C-C, and T-T$$

 $-X_2 = A-C and G-T$
 $-X_3 = A-G and C-T$
 $-X_4 = A-T and G-C$

Watson's Discovery of the DNA Base Pairs

•
$$u_1 = 0, u_2 = 0, u_3 = 0, \text{ and } u_4 = 1$$

- where only the last explains Chargaff's ratios (i.e., %A/%T = 1 and %G/%C = 1)
- But according to Watson's (1968) report:
- at t = 1, $p_{11} >> p_{21} \approx p_{31} \approx p_{41}$: e.g., $-p_{11} = .40$, $p_{21} = p_{31} = p_{41} = .20$, $\varphi_{pu}^{2}(1) = .143$ $-p_{11} = .28$, $p_{21} = p_{31} = p_{41} = .24$, $\varphi_{pu}^{2}(1) = .229$

Conclusions

- First, creative solutions entail Type 2 variants with
 - (a) low generation probabilities (high novelty),
 - (b) high utilities (high usefulness), and
 - (c) low selection expectations (high surprise)

Conclusions

- Second, creative Type 2 variants can only be distinguished from noncreative Type 3 variants by implementing BVSR
- That is, because the creator does not know the utility in advance, Type 2 and Type 3 can only be discriminated via generation and test episodes

Conclusions

- Third, φ_{pu}^{2} provides a conservative estimate of where solution variant sets fall on the blind-sighted continuum.
- When φ_{pu}^2 is applied to real problemsolving episodes, $\varphi_{pu}^2 \le .5$
- Moreover, variant sets seldom attain even this degree of sightedness until BVSR removes one or more Type 3 variants