

BVSR ≠ Buffy Vampire Slayer Relationships

Creative Problem Solving as Campbellian BVSR

Quantitative Creativity Measure and Blind-Sighted Metric

Background

- Donald T. Campbell's (1960) BVSR model of creativity and discovery
- Then controversies and confusions
- e.g., randomness, equiprobability, volition, Darwinism ... ad infinitum
- total chaos for the next 50 years!
- Then it dawned on me:

Background

- Nobody neither proponents nor opponents – knew what they were talking about!
- Absolutely nobody defined their terms!
- Not even Campbell!

Background

- Hence, we need a formal treatment that allows logical deductions and demonstrations
- To keep the discussion simple, this treatment will be expressed in terms of creative problem solving

- Given a problem that needs to be solved:
 - Goal with attainment (utility) criteria
 - For complex problems: subgoals with their separate attainment criteria
 - Goals and subgoals may form a goal hierarchy
 - e.g., writing a poem: the composition's topic or argument, its length and structure, meter or rhythm, rhyme and alliteration, metaphors and similes, and the best word for a single place that optimizes both sound and sense (cf. Edgar Allan Poe's 1846 "The Philosophy of Composition")

. . .

- Solution variants (alternative solutions or parts of solutions): e.g.,
 - algorithms, analogies, arrangements, assumptions, axioms, colors, conjectures, corollaries, definitions, designs, equations, estimates, explanations, expressions, forms, formulas, harmonies, heuristics, hypotheses, images, interpretations, media, melodies, metaphors, methods, models, narratives, observations, parameters, patterns, phrasings, plans, predictions, representations, rhymes, rhythms, sketches, specifications, start values, statistics, structures, techniques, terms, themes, theorems, theories, words
 - all depending on nature of problem

- Creative solution:
 - Three-criterion definitions
 - US Patent Office: new, useful, and nonobvious
 - Boden (2004): novel, valuable, and surprising
 - Amabile (1996):
 - novel
 - appropriate, useful, correct, or valuable
 - heuristic rather than algorithmic

- Creative solution:
 - To wit, creativity requires some degree of a "Eureka!" or "Aha!" experience
 - Cf. "reasonable" versus "unreasonable" problems (Perkins, 2000):
 - reasonable problems "can be reasoned out step by step to home in on the solutions."
 - unreasonable problems "do not lend themselves to step-by-step thinking. One has to sneak up on them."

- Creative solution: Here -
 - original (rather than "novel")
 - useful (noun "utility")
 - surprising (noun "surprisingness")
 - innovations, not mere adaptations
 - inventions, not just improvements
 - productive, not reproductive thought

- Solution parameters: x_i characterized by
 - *initial* generation probability: p_i
 - hence, solution variant *originality* = $(1 p_i)$
 - *final* utility: *u_i* (probability or proportion): either
 - probability of selection-retention, or
 - proportion of *m* criteria actually satisfied
 - prior information: v_i (actual knowledge of u_i)
 - hence, solution variant surprisingness = $(1 v_i)$
- N.B.: These parameters are subjective

k Solution Variants

Solution	Probability	Utility	Information
<i>X</i> ₁	ρ_1	<i>U</i> ₁	<i>V</i> ₁
x ₂	p_2	<i>U</i> ₂	V ₂
X ₃	ρ_3	U ₃	V ₃
			•••
X _i	p_i	U _i	V _i
			•••
X _k	p_k	U _k	V _k

 $0 < p_i \le 1, \Sigma p_i \le 1;$ $0 \le u_i \le 1, \Sigma u_i \le k; 0 \le v_i \le 1, \Sigma v_i \le k$

Two Special Types

- Reproductive:
 - $p_i = u_i = v_i = 1$
 - i.e., low originality, high utility, low surprise
 - BVSR utterly unnecessary because variant "frontloaded" by known utility value
 - i.e., u_i implies p_i via v_i
 - Selection reduces to mere "quality control" to avoid calculation mistakes or memory slips
 - But also routine, even algorithmic thinking, and hence not creative

Two Special Types

• Productive:

- $p_i \neq 0$ but $p_i \approx 0$ (high originality)
- $u_i = 1$ (high utility)
- $v_i = 0$ or $v_i \approx 0$ (high surprise)
- BVSR mandatory to distinguish productive from potential solutions where $p_i \neq 0$ and $v_i = 0$ but $u_i = 0$
- i.e., because the creator *does not know* the utility value, must generate and test to find out
- Hence, innovative, inventive, or creative thinking

Obtaining Quantitative Indices

- The creativity of single solution variants
- The "sightedness" of solution sets

Creativity Measure

 What is the most creative solution in the set of k solutions?

•
$$c_i = (1 - p_i) u_i (1 - v_i)$$

- where $0 \le c_i < 1$ (N.B.: why $c_i \ne 1$)
- $c_i \rightarrow 1$ as
 - $p_i \rightarrow 0$ (maximizing originality),
 - $u_i \rightarrow 1$ (maximizing utility), and
 - $v_i \rightarrow 0$ (maximizing surprise)
- $c_i = 0$ if $p_i = 1$ and $v_i = 1$ (or $u_i = 0$)
- e.g., reproductive variant $p_i = u_i = v_i = 1$

Creativity Measure

• Examples:

•
$$p_i = .1, u_i = 1, v_i = 0, c_i = .9$$

• fully "blind" solution

•
$$p_i = .1, u_i = 1, v_i = .1, c_i = .81$$

"hunch" implies less creativity

•
$$p_i = .1, u_i = .5, v_i = .1, c_i = .405$$

less utility implies less creativity

Creativity Measure

- Individualistic vs. collectivistic cultures:
 - letting $v_1 = v_2 = 0$
 - $p_1 = .001$ and $u_1 = .5$ (originality > utility)
 - $p_2 = .5$ and $u_2 = 1$ (originality < utility)
 - c₁ ≈ .5 (or .4995, exactly)
 - $C_2 = .5$
 - e.g., ...

Xu Daoning's Fishermen's Evening Song

Jackson Pollock's No. 5, 1948

Blind-Sighted Metric

- Goal: a measure for any set of k solution variants that indicates the relative amount of sightedness and blindness:
 - $S = 1/k \Sigma p_i u_i v_i$, where $0 \le S \le 1$
 - S = 1 when set is perfectly "sighted"
 - S = 0 when set is perfectly "blind"
 - Why v_i must be included in the metric (viz. necessary and sufficient metric that forbids "lucky guesses")
- Hence, blindness B = 1 S
- Combining with the creativity measure ...

Case	p_1	<i>p</i> ₂	<i>U</i> ₁	<i>U</i> ₂	<i>V</i> ₁	<i>V</i> ₂	S	<i>C</i> ₁	<i>C</i> ₂

Case	p_1	<i>p</i> ₂	<i>U</i> ₁	<i>U</i> ₂	<i>V</i> ₁	<i>V</i> ₂	S	<i>C</i> ₁	<i>C</i> ₂
1	1	0	1	0	1	0	1	0	[0]

Case	p_1	<i>p</i> ₂	<i>U</i> ₁	<i>U</i> ₂	<i>V</i> ₁	<i>V</i> ₂	S	<i>C</i> ₁	<i>C</i> ₂
1	1	0	1	0	1	0	1	0	[0]
2	.5	.5	1	0	0	0	0	.5	0

Case	p_1	<i>p</i> ₂	<i>U</i> ₁	<i>U</i> ₂	<i>V</i> ₁	<i>V</i> ₂	S	<i>C</i> ₁	<i>C</i> ₂
1	1	0	1	0	1	0	1	0	[0]
2	.5	.5	1	0	0	0	0	.5	0
3	.6	.4	1	0	.1	0	.06	.36	0

Case	p_1	<i>p</i> ₂	<i>U</i> ₁	<i>U</i> ₂	<i>V</i> ₁	<i>V</i> ₂	S	<i>C</i> ₁	<i>C</i> ₂
1	1	0	1	0	1	0	1	0	[0]
2	.5	.5	1	0	0	0	0	.5	0
3	.6	.4	1	0	.1	0	.06	.36	0
4	0	1	1	0	0	0	0	[0]	0

Case	p_1	<i>p</i> ₂	<i>U</i> ₁	<i>U</i> ₂	<i>V</i> ₁	<i>V</i> ₂	S	<i>C</i> ₁	<i>C</i> ₂
1	1	0	1	0	1	0	1	0	[0]
2	.5	.5	1	0	0	0	0	.5	0
3	.6	.4	1	0	.1	0	.06	.36	0
4	0	1	1	0	0	0	0	[0]	0
5	1	0	0	0	0	0	0	0	[0]

Edison's "drag hunt" to find an incandescent filament that ...

- has low-cost,
- features high-resistance,
- glows brightly 13¹/₂ hours, and
- is durable

k	<i>p</i> _i	U ₁	U _i	V _i	S	<i>C</i> ₁	C _i
			<i>i</i> ≠ 1				<i>i</i> ≠ 1

k	p _i	<i>U</i> ₁	<i>U_i</i> <i>i</i> ≠ 1	V _i	S	<i>C</i> ₁	C _i i≠1
2	.5	1	7 <i>∓</i> 1 0	0	0	.5	7 <i>∓</i> 1 0

k	<i>p</i> _i	U ₁	U _i	V _i	S	<i>C</i> ₁	C _i
			<i>i</i> ≠ 1				<i>i</i> ≠ 1
2	.5	1	0	0	0	.5	0
3	.33	1	0	0	0	.67	0

k	<i>p</i> _i	U ₁	U _i	V _i	S	<i>C</i> ₁	C _i
			<i>i</i> ≠ 1				<i>i</i> ≠ 1
2	.5	1	0	0	0	.5	0
3	.33	1	0	0	0	.67	0
4	.25	1	0	0	0	.75	0

k	p _i	U ₁	U _i	V _i	S	<i>C</i> ₁	C _i
			<i>i</i> ≠ 1				<i>i</i> ≠ 1
2	.5	1	0	0	0	.5	0
3	.33	1	0	0	0	.67	0
4	.25	1	0	0	0	.75	0
5	.20	1	0	0	0	.80	0

Watson's Discovery of the DNA Base Pairs

- Four bases (nucleotides):
 - two purines: adenine (A) and guanine (G)
 - two pyrimidines: cytocine (C) and thymine (T)
- Four solution variants:
 - $x_1 = A-A, G-G, C-C, and T-T$
 - *x*₂ = A-C and G-T
 - $x_3 = A-G$ and C-T
 - *x*₄ = A-T and G-C

Thymine

k	<i>p</i> _i	<i>U</i> ₁	U _i	V _i	S	<i>C</i> ₁	C _i
			<i>i</i> ≠ 1				C _i i≠1

k	p _i	<i>U</i> ₁	U _i	V _i	S	<i>C</i> ₁	C _i
			<i>i</i> ≠ 1				<i>i</i> ≠ 1
2	.5	1	0	.5	.25	.25	0

k	p _i	U ₁	U _i	V _i	S	<i>C</i> ₁	C _i
			<i>i</i> ≠ 1				<i>i</i> ≠ 1
2	.5	1	0	.5	.25	.25	0
3	.33	1	0	.33	.11	.45	0

k	<i>p</i> _i	U ₁	U _i	V _i	S	<i>C</i> ₁	C _i
			<i>i</i> ≠ 1				<i>i</i> ≠ 1
2	.5	1	0	.5	.25	.25	0
3	.33	1	0	.33	.11	.45	0
4	.25	1	0	.25	.06	.56	0

k	<i>p</i> _i	U ₁	U _i	V _i	S	<i>C</i> ₁	C _i
			<i>i</i> ≠ 1				<i>i</i> ≠ 1
2	.5	1	0	.5	.25	.25	0
3	.33	1	0	.33	.11	.45	0
4	.25	1	0	.25	.06	.56	0
5	.20	1	0	.20	.04	.64	0

Hence, variant superfluity \rightarrow BVSR

Selection Procedures

- External versus Internal
 - Introduces no complications
- Simultaneous versus Sequential
 - Latter introduces complications
 - In particular, although sightedness will tend to increase with successive generate-and-tests, this upward tendency need not be monotonic or incremental when no solution has perfect utility
 - The consequence: Backtracking \rightarrow BVSR

Selection Procedures

- Two alternative sequential scenarios
 - Informed guess: Elimination
 - Total ignorance: Exploration
- In both scenarios assume that *u*-max = .9
 - i.e., no perfect solution, but one that is satisfactory

Selection Procedures

- Consequences for *p_i*:
 - When a solution is tested and rejected its probability (temporarily) set to zero
 - For the remaining solutions, two scenarios
 - Elimination: normalization $\Sigma p_i = 1$ at each trial because BVSR ensures solution identification
 - Exploration: no normalization, so that remaining probabilities remain unchanged
 - because BVSR does not ensure solution identification
 - the solution set may contain no solution, partial or otherwise

First: Sequential Selection

Informed guess: Elimination

t	k	p_1	<i>U</i> ₁	<i>p</i> ₂	<i>U</i> ₂	p_3	U ₃	p_4	<i>U</i> ₄	V _t	S _t
1	4	.4	0	.3	.9	.2	.3	.1	.4	.1	.007

$$c$$
-max $c_2 = .57 [= (1 - .3)(.9)(1 - .1)]$

$$B_1 = .993$$

t	k	<i>p</i> ₁	<i>U</i> ₁	<i>p</i> ₂	<i>U</i> ₂	<i>p</i> ₃	U ₃	<i>p</i> ₄	<i>U</i> ₄	V _t	S_t
1	4	.4	0	.3	.9	.2	.3	.1	.4	.1	.007
2	3	0	0	.5	.9	.33	.3	.17	.4	.1	.012

c-max $c_2 = .57$

N.B.: $\Sigma p_i = 1$ (normalization) $B_2 = .988$

t	k	<i>p</i> ₁	<i>U</i> ₁	<i>p</i> ₂	<i>U</i> ₂	<i>p</i> ₃	<i>И</i> ₃	p_4	U ₄	V _t	S _t
1	4	.4	0	.3	.9	.2	.3	.1	.4	.1	.007
2	3	0	0	.5	.9	.33	.3	.17	.4	.1	.012
3	2	0	0	0	.9	.67	.3	.33	.4	.1	.008

c-max
$$c_2 = .57$$

 $B_3 = .992$

t	k	<i>p</i> ₁	<i>U</i> ₁	<i>p</i> ₂	<i>U</i> ₂	p_3	<i>И</i> ₃	p_4	U ₄	V _t	S _t
1	4	.4	0	.3	.9	.2	.3	.1	.4	.1	.007
2	3	0	0	.5	.9	.33	.3	.17	.4	.1	.012
3	2	0	0	0	.9	.67	.3	.33	.4	.1	.008
4	1	0	0	0	.9	0	.3	1	.4	.1	.04

c-max
$$c_2 = .57$$

 $B_4 = .96$

t	k	p_1	<i>U</i> ₁	<i>p</i> ₂	И ₂	p_3	U ₃	p_4	U ₄	V _t	S_t
1	4	.4	0	.3	.9	.2	.3	.1	.4	.1	.007
2	3	0	0	.5	.9	.33	.3	.17	.4	.1	.012
3	2	0	0	0	.9	.67	.3	.33	.4	.1	.008
4	1	0	0	0	.9	0	.3	1	.4	.1	.04
5	1	0	0	1	.9	0	.3	0	.4	$\left(1\right)$.9
<i>c</i> -m	ax c_2	= .57	7	E	Backtr	ack				B_5	; = .1

Second: Sequential Selection

Total ignorance: Exploration

t	k	p_1	<i>U</i> ₁	<i>p</i> ₂	<i>U</i> ₂	p_3	И ₃	p_4	<i>U</i> 4	V _t	S_t
1	4	.4	0	.3	.9	.2	.3	.1	.4	0	0

c-max $c_2 = .63 [= (1 - .3)(.9)(1 - 0)] > .57$

 $B_1 = 1.0$

t	k	<i>p</i> ₁	<i>U</i> ₁	<i>p</i> ₂	<i>U</i> ₂	<i>p</i> ₃	U ₃	<i>p</i> ₄	<i>U</i> ₄	V _t	S_t
1	4	.4	0	.3	.9	.2	.3	.1	.4	0	0
2	3	0	0	.3	.9	.2	.3	.1	.4	0	0

c-max $c_2 = .63$ **N.B.: no normalization**

t	k	<i>p</i> ₁	U ₁	<i>p</i> ₂	<i>U</i> ₂	<i>p</i> ₃	U ₃	<i>p</i> ₄	<i>U</i> ₄	V _t	S_t
1	4	.4	0	.3	.9	.2	.3	.1	.4	0	0
2	3	0	0	.5	.9	.2	.3	.1	.4	0	0
3	2	0	0	0	.9	.2	.3	.1	.4	0	0

c-max $c_2 = .63$ **Temporary rejection**

t	k	<i>p</i> ₁	<i>U</i> ₁	<i>p</i> ₂	<i>U</i> ₂	<i>p</i> ₃	U ₃	<i>p</i> ₄	U ₄	V _t	S_t
1	4	.4	0	.3	.9	.2	.3	.1	.4	0	0
2	3	0	0	.5	.9	.2	.3	.1	.4	0	0
3	2	0	0	0	.9	.2 ♦	.3	.1	.4	0	0
4	1	0	0	0	.9	0	.3	.1	.4	0	0

c-max
$$c_2 = .63$$

 $B_4 = 1.0$

										1	
t	k	<i>p</i> ₁	U ₁	<i>p</i> ₂	<i>U</i> ₂	<i>p</i> ₃	U ₃	<i>p</i> ₄	U ₄	V _t	S_t
1	4	.4	0	.3	.9	.2	.3	.1	.4	0	0
2	3	0	0	.5	.9	.33	.3	.17	.4	0	0
3	2	0	0	0	.9	.67	.3	.33	.4	0	0
4	1	0	0	0	.9	0	.3	1	.4	0	0
5	1	0	0	1	.9	0	.3	0	.4	$\begin{pmatrix} 1 \end{pmatrix}$.9
<i>c</i> -max $c_2 = .63$ Backtrack									B_5	= .1	

Two critical lessons

First critical lesson -Backtracking implies BVSR: e.g. ...

Picasso's Guernica sketches

Second critical lesson -BVSR increases S_t (decreases B_t): e.g. ...

benzene ring

ouroboros

- I have just shown how BVSR has an intimate connection with creative problem solving
- Moreover, I have provided the rationale for two universal BVSR signs: variant superfluity and backtracking
- However, it should be equally clear from the formal definitions that the BVSR-creativity connection is essential rather than accidental (i.e., it is not contingent on the particular computational examples shown)

- E.g., in a set of k variants with one useful solution x₁:
 - $S \rightarrow 1 \text{ as } p_1 \rightarrow 1, u_1 \rightarrow 1, \text{ and } v_1 \rightarrow 1,$
 - and for all $i \neq 1$, $p_i \rightarrow 0$, $u_i \rightarrow 0$, and $v_i \rightarrow 0$, implying that $k \rightarrow 1$ (because $\Sigma p_i \leq 1$), whereas
 - $c_1 \rightarrow 1 \text{ as } p_1 \rightarrow 0, u_1 \rightarrow 1, \text{ and } v_1 \rightarrow 0,$
 - implying that k >> 1 (variant superfluity)
- In general, highly sighted sets cannot possibly contain highly creative solutions

- In contrast, absolutely nothing prevents a highly creative solution from emerging in a set where S = 0 (i.e., B = 1), for
- S = 0 when $p_i u_i v_i = 0$ for all *i*, indicating that any solution with $p_i > 0$ and $u_i > 0$ must have $v_i = 0$, a stipulation consistent with $c_i >> 0$
- If $v_i = 0$, then $c_i \rightarrow 1$ as $p_i \rightarrow 0$ and $u_i \rightarrow 1$ while S = 0
- E.g., serendipitous discoveries

- Yet is BVSR-creativity link so close that it lacks empirical content?
- Is it tantamount to an assertion like "All bachelors are unmarried"?
- The answer is complex:
 - On the one hand, the BVSR-creativity connection cannot be disproved empirically
 - On the other hand, the operation of BVSR in creativity can be empirically investigated!

- For example, we can ask:
 - What cognitive processes and behavioral procedures generate sets that contain at least one solution where $p_i \rightarrow 0$, $u_i \rightarrow 1$, and $v_i \rightarrow 0$?
 - What characteristics enable a person to engage in the foregoing cognitive processes and behavioral procedures?
 - What environmental factors encourage or discourage a person from engaging in those processes or procedures?

- To illustrate, what is the function of
 - reduced latent inhibition?
 - remote association?
 - divergent thinking?
 - behavioral tinkering?
 - general intelligence?
 - introversion?
 - "positive" schizotypy or psychoticism?
 - domain-specific expertise?
 - multicultural experiences?
- These are all valid empirical questions!

Conclusion

- What we can't deny is that BVSR → creativity
- So ...

Donald Campbell (1960) was right!

 [P.S.: If only he had worked out the analytical details!]

