

BVSR

Creative Problem Solving as Campbellian BVSR

Quantitative Creativity Measure and Blind-Sighted Metric

Background

- Donald T. Campbell's (1960) BVSR model of creativity and discovery
- Then controversies and confusions
- e.g., randomness, equiprobability, volition, Darwinism ... ad infinitum
- total chaos for the next 50 years!
- Then it dawned on me:

Background

- Nobody - neither proponents nor opponents - knew what they were talking about!
- Absolutely nobody defined their terms!
- Not even Campbell!

Background

- Hence, we need a formal treatment that allows logical deductions and demonstrations
- To keep the discussion simple, this treatment will be expressed in terms of creative problem solving

Definitions

- Given a problem that needs to be solved:
- Goal with attainment (utility) criteria
- For complex problems: subgoals with their separate attainment criteria
- Goals and subgoals may form a goal hierarchy
- e.g., writing a poem: the composition's topic or argument, its length and structure, meter or rhythm, rhyme and alliteration, metaphors and similes, and the best word for a single place that optimizes both sound and sense (cf. Edgar Allan Poe's 1846 "The Philosophy of Composition")

Definitions

- Solution variants (alternative solutions or parts of solutions): e.g.,
- algorithms, analogies, arrangements, assumptions, axioms, colors, conjectures, corollaries, definitions, designs, equations, estimates, explanations, expressions, forms, formulas, harmonies, heuristics, hypotheses, images, interpretations, media, melodies, metaphors, methods, models, narratives, observations, parameters, patterns, phrasings, plans, predictions, representations, rhymes, rhythms, sketches, specifications, start values, statistics, structures, techniques, terms, themes, theorems, theories, words
- all depending on nature of problem

Definitions

- Creative solution:
- Three-criterion definitions
- US Patent Office: new, useful, and nonobvious
- Boden (2004): novel, valuable, and surprising
- Amabile (1996):
- novel
- appropriate, useful, correct, or valuable
- heuristic rather than algorithmic

Definitions

- Creative solution:
- To wit, creativity requires some degree of a "Eureka!" or "Aha!" experience
- Cf. "reasonable" versus "unreasonable" problems (Perkins, 2000):
- reasonable problems "can be reasoned out step by step to home in on the solutions."
- unreasonable problems "do not lend themselves to step-by-step thinking. One has to sneak up on them."

Definitions

- Creative solution: Here -
- original (rather than "novel")
- useful (noun "utility")
- surprising (noun "surprisingness")
- innovations, not mere adaptations
- inventions, not just improvements
- productive, not reproductive thought

Definitions

- Solution parameters: x_{i} characterized by
- initial generation probability: p_{i}
- hence, solution variant originality $=\left(1-p_{i}\right)$
- final utility: u_{i} (probability or proportion): either
- probability of selection-retention, or
- proportion of m criteria actually satisfied
- prior information: v_{i} (actual knowledge of u_{i})
- hence, solution variant surprisingness $=\left(1-v_{i}\right)$
- N.B.: These parameters are subjective

k Solution Variants

Solution	Probability	Utility	Information
x_{1}	p_{1}	u_{1}	v_{1}
x_{2}	p_{2}	u_{2}	v_{2}
x_{3}	p_{3}	u_{3}	v_{3}
\ldots	\ldots	\ldots	\ldots
x_{i}	p_{i}	u_{i}	v_{i}
\ldots	\ldots	\ldots	\ldots
x_{k}	p_{k}	u_{k}	v_{k}

$$
\begin{gathered}
0<p_{i} \leq 1, \Sigma p_{i} \leq 1 \\
0 \leq u_{i} \leq 1, \Sigma u_{i} \leq k ; 0 \leq v_{i} \leq 1, \Sigma v_{i} \leq k
\end{gathered}
$$

Two Special Types

- Reproductive:
- $p_{i}=u_{i}=v_{i}=1$
- i.e., low originality, high utility, low surprise
- BVSR utterly unnecessary because variant "frontloaded" by known utility value
- i.e., u_{i} implies p_{i} via v_{i}
- Selection reduces to mere "quality control" to avoid calculation mistakes or memory slips
- But also routine, even algorithmic thinking, and hence not creative

Two Special Types

- Productive:
- $p_{i} \neq 0$ but $p_{i} \approx 0$ (high originality)
- $u_{i}=1$ (high utility)
- $v_{i}=0$ or $v_{i} \approx 0$ (high surprise)
- BVSR mandatory to distinguish productive from potential solutions where $p_{i} \neq 0$ and $v_{i}=0$ but $u_{i}=0$
- i.e., because the creator does not know the utility value, must generate and test to find out
- Hence, innovative, inventive, or creative thinking

Obtaining Quantitative Indices

- The creativity of single solution variants
- The "sightedness" of solution sets

Creativity Measure

- What is the most creative solution in the set of k solutions?
- $c_{i}=\left(1-p_{i}\right) u_{i}\left(1-v_{i}\right)$
- where $0 \leq c_{i}<1$ (N.B.: why $c_{i} \neq 1$)
- $c_{i} \rightarrow 1$ as
- $p_{i} \rightarrow 0$ (maximizing originality),
- $u_{i} \rightarrow 1$ (maximizing utility), and
- $v_{i} \rightarrow 0$ (maximizing surprise)
- $c_{i}=0$ if $p_{i}=1$ and $v_{i}=1$ (or $u_{i}=0$)
- e.g., reproductive variant $p_{i}=u_{i}=v_{i}=1$

Creativity Measure

- Examples:
- $p_{i}=.1, u_{i}=1, v_{i}=0, c_{i}=.9$
- fully "blind" solution
- $p_{i}=.1, u_{i}=1, v_{i}=.1, c_{i}=.81$
- "hunch" implies less creativity
- $p_{i}=.1, u_{i}=.5, v_{i}=.1, c_{i}=.405$
- less utility implies less creativity

Creativity Measure

- Individualistic vs. collectivistic cultures:
- letting $v_{1}=v_{2}=0$
- $p_{1}=.001$ and $u_{1}=.5$ (originality $>$ utility)
- $p_{2}=.5$ and $u_{2}=1$ (originality <utility)
- $c_{1} \approx .5$ (or .4995, exactly)
- $C_{2}=.5$
- e.g., ...

Xu Daoning's Fishermen's Evening Song

Jackson Pollock's No. 5, 1948

Blind-Sighted Metric

- Goal: a measure for any set of k solution variants that indicates the relative amount of sightedness and blindness:
- $S=1 / k \Sigma p_{i} u_{i} v_{i}$, where $0 \leq S \leq 1$
- $S=1$ when set is perfectly "sighted"
- $S=0$ when set is perfectly "blind"
- Why v_{i} must be included in the metric (viz. necessary and sufficient metric that forbids "lucky guesses")
- Hence, blindness $B=1-S$
- Combining with the creativity measure ...

"Fork in the Road" $k=2$

Case	p_{1}	p_{2}	u_{1}	u_{2}	v_{1}	v_{2}	S	c_{1}	c_{2}

"Fork in the Road" $k=2$

Case	p_{1}	p_{2}	u_{1}	u_{2}	v_{1}	v_{2}	S	c_{1}	c_{2}
1	1	0	1	0	1	0	1	0	$[0]$

"Fork in the Road" $k=2$

Case	p_{1}	p_{2}	u_{1}	u_{2}	v_{1}	v_{2}	S	c_{1}	c_{2}
1	1	0	1	0	1	0	1	0	$[0]$
2	.5	.5	1	0	0	0	0	.5	0

"Fork in the Road" $k=2$

Case	p_{1}	p_{2}	u_{1}	u_{2}	v_{1}	v_{2}	S	c_{1}	c_{2}
1	1	0	1	0	1	0	1	0	$[0]$
2	.5	.5	1	0	0	0	0	.5	0
3	.6	.4	1	0	.1	0	.06	.36	0

"Fork in the Road" $k=2$

Case	p_{1}	p_{2}	u_{1}	u_{2}	v_{1}	v_{2}	S	c_{1}	c_{2}
1	1	0	1	0	1	0	1	0	$[0]$
2	.5	.5	1	0	0	0	0	.5	0
3	.6	.4	1	0	.1	0	.06	.36	0
4	0	1	1	0	0	0	0	$[0]$	0

"Fork in the Road" $k=2$

Case	p_{1}	p_{2}	u_{1}	u_{2}	v_{1}	v_{2}	S	c_{1}	c_{2}
1	1	0	1	0	1	0	1	0	$[0]$
2	.5	.5	1	0	0	0	0	.5	0
3	.6	.4	1	0	.1	0	.06	.36	0
4	0	1	1	0	0	0	0	$[0]$	0
5	1	0	0	0	0	0	0	0	$[0]$

Edison's "drag hunt" to find an incandescent filament that ...

- has low-cost,
- features high-resistance,
- glows brightly $13 ½$ hours, and
- is durable

Solution Equiprobability: Total Ignorance: Exploration

k	p_{i}	u_{1}	u_{i} $i \neq 1$	v_{i}	S	c_{1}	c_{i} $i \neq 1$

Solution Equiprobability: Total Ignorance: Exploration

k	p_{i}	u_{1}	u_{i} $i \neq 1$	v_{i}	S	c_{1}	c_{i} $i \neq 1$
2	.5	1	0	0	0	.5	0

Solution Equiprobability: Total Ignorance: Exploration

k	p_{i}	u_{1}	u_{i} $i \neq 1$	v_{i}	S	c_{1}	c_{i} $i \neq 1$
2	.5	1	0	0	0	.5	0
3	.33	1	0	0	0	.67	0

Solution Equiprobability: Total Ignorance: Exploration

k	p_{i}	u_{1}	u_{i} $i \neq 1$	v_{i}	S	c_{1}	c_{i} $i \neq 1$
2	.5	1	0	0	0	.5	0
3	.33	1	0	0	0	.67	0
4	.25	1	0	0	0	.75	0

Solution Equiprobability: Total Ignorance: Exploration

k	p_{i}	u_{1}	u_{i} $i \neq 1$	v_{i}	S	c_{1}	c_{i} $i \neq 1$
2	.5	1	0	0	0	.5	0
3	.33	1	0	0	0	.67	0
4	.25	1	0	0	0	.75	0
5	.20	1	0	0	0	.80	0

MISS SCARLETT

－1ヨ74ซOS SSIW

3IIHM＇SaW
$\sum \propto \omega \leq エ ー ト \omega$

ミ๙ज aw＜uOUx
YכOכVヨd＇suw

COLONEL MUSTARD

0
d
\forall
1
s
$⿵$
W
7
3
N
O
7
0
0
G甘VISNW 13NOTOD

Watson's Discovery of the DNA Base Pairs

- Four bases (nucleotides):
- two purines: adenine (A) and guanine (G)
- two pyrimidines: cytocine (C) and thymine (T)
- Four solution variants:
- $x_{1}=\mathrm{A}-\mathrm{A}, \mathrm{G}-\mathrm{G}, \mathrm{C}-\mathrm{C}$, and T-T
- $x_{2}=\mathrm{A}-\mathrm{C}$ and G-T
- $x_{3}=$ A-G and C-T
- $x_{4}=$ A-T and G-C

Solution Equiprobability: Informed Guess: Elimination

k	p_{i}	u_{1}	u_{i} $i \neq 1$	v_{i}	S	c_{1}	c_{i} $i \neq 1$

Solution Equiprobability: Informed Guess: Elimination

k	p_{i}	u_{1}	u_{i} $i \neq 1$	v_{i}	S	c_{1}	c_{i} $i \neq 1$
2	.5	1	0	.5	.25	.25	0

Solution Equiprobability: Informed Guess: Elimination

k	p_{i}	u_{1}	u_{i} $i \neq 1$	v_{i}	S	c_{1}	c_{i} $i \neq 1$
2	.5	1	0	.5	.25	.25	0
3	.33	1	0	.33	.11	.45	0

Solution Equiprobability: Informed Guess: Elimination

k	p_{i}	u_{1}	u_{i} $i \neq 1$	v_{i}	S	c_{1}	c_{i} $i \neq 1$
2	.5	1	0	.5	.25	.25	0
3	.33	1	0	.33	.11	.45	0
4	.25	1	0	.25	.06	.56	0

Solution Equiprobability: Informed Guess: Elimination

k	p_{i}	u_{1}	u_{i} $i \neq 1$	v_{i}	S	c_{1}	c_{i} $i \neq 1$
2	.5	1	0	.5	.25	.25	0
3	.33	1	0	.33	.11	.45	0
4	.25	1	0	.25	.06	.56	0
5	.20	1	0	.20	.04	.64	0

Hence, variant superfluity \rightarrow BVSR

Selection Procedures

- External versus Internal
- Introduces no complications
- Simultaneous versus Sequential
- Latter introduces complications
- In particular, although sightedness will tend to increase with successive generate-and-tests, this upward tendency need not be monotonic or incremental when no solution has perfect utility
- The consequence: Backtracking \rightarrow BVSR

Selection Procedures

- Two alternative sequential scenarios
- Informed guess: Elimination
- Total ignorance: Exploration
- In both scenarios assume that u-max $=.9$
- i.e., no perfect solution, but one that is satisfactory

Selection Procedures

- Consequences for p_{i} :
- When a solution is tested and rejected its probability (temporarily) set to zero
- For the remaining solutions, two scenarios
- Elimination: normalization $\Sigma p_{i}=1$ at each trial because BVSR ensures solution identification
- Exploration: no normalization, so that remaining probabilities remain unchanged
- because BVSR does not ensure solution identification
- the solution set may contain no solution, partial or otherwise

First:
 Sequential Selection

Informed guess: Elimination

Sequential Selection: Informed guess: Elimination

t	k	p_{1}	u_{1}	p_{2}	u_{2}	p_{3}	u_{3}	p_{4}	u_{4}	v_{t}	S_{t}
1	4	. 4	0	. 3	. 9	. 2	. 3	. 1	. 4	. 1	. 007
		.	=	-	(9)						$=.993$

Sequential Selection: Informed guess: Elimination

t	k	p_{1}	u_{1}	p_{2}	u_{2}	p_{3}	u_{3}	p_{4}	u_{4}	v_{t}	S_{t}
1	4	.4	0	.3	.9	.2	.3	.1	.4	.1	.007
2	3	\boxed{t}	0	.5	.9	.33	.3	.17	.4	.1	.012

Sequential Selection: Informed guess: Elimination

t	k	p_{1}	u_{1}	p_{2}	u_{2}	p_{3}	u_{3}	p_{4}	u_{4}	v_{t}	S_{t}
1	4	. 4	0	. 3	. 9	. 2	. 3	. 1	. 4	. 1	. 007
2	3	0	0	. 5	. 9	$\begin{gathered} .33 \\ \downarrow \end{gathered}$. 3	$.17$. 4	. 1	. 012
3	2	0	0	0	. 9	. 67	. 3	. 33	. 4	. 1	. 008
$c-\max c_{2}=.57 \quad B_{3}=.992$											

Sequential Selection: Informed guess: Elimination

t	k	p_{1}	u_{1}	p_{2}	u_{2}	p_{3}	u_{3}	p_{4}	u_{4}	v_{t}	S_{t}
1	4	.4	0	.3	.9	.2	.3	.1	.4	.1	.007
2	3	0	0	.5	.9	.33	.3	.17	.4	.1	.012
3	2	0	0	0	.9	.67	.3	.33	.4	.1	.008
$\downarrow 4$	1	0	0	0	.9	0	.3	1	.4	.1	.04
$c-m a x$	$c_{2}=.57$										

Sequential Selection: Informed guess: Elimination

t	k	p_{1}	u_{1}	p_{2}	u_{2}	p_{3}	u_{3}	p_{4}	u_{4}	v_{t}	S_{t}
1	4	. 4	0	. 3	. 9	. 2	. 3	. 1	. 4	. 1	. 007
2	3	0	0	. 5	. 9	. 33	. 3	. 17	. 4	. 1	. 012
3	2	0	0	0	. 9	. 67	. 3	. 33	. 4	. 1	. 008
4	1	0	0	0	. 9	0	. 3	1	. 4	. 1	. 04
5	1	0	0		. 9	0	. 3	0	. 4		. 9
c-max $c_{2}=.57 \quad$ Backtrack $\quad B_{5}=.1$											

Second:
 Sequential Selection

Total ignorance: Exploration

Sequential Selection: Total ignorance: Exploration

| t | k | p_{1} | u_{1} | p_{2} | u_{2} | p_{3} | u_{3} | p_{4} | u_{4} | v_{t} | S_{t} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 4 | .4 | 0 | .3 | .9 | .2 | .3 | .1 | .4 | 0 | 0 |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| c c-max $c_{2}=.63[=(1-.3)(.9)(1-0)]>.57$ | $B_{1}=1.0$ | | | | | | | | | | |

Sequential Selection: Total ignorance: Exploration

Sequential Selection: Total ignorance: Exploration

Sequential Selection:

 Total ignorance: Exploration| t | k | p_{1} | u_{1} | p_{2} | u_{2} | p_{3} | u_{3} | p_{4} | u_{4} | v_{t} | S_{t} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 4 | .4 | 0 | .3 | .9 | .2 | .3 | .1 | .4 | 0 | 0 |
| 2 | 3 | 0 | 0 | .5 | .9 | .2 | .3 | .1 | .4 | 0 | 0 |
| 3 | 2 | 0 | 0 | 0 | .9 | .2 | .3 | .1 | .4 | 0 | 0 |
| 4 | 1 | 0 | 0 | 0 | .9 | 0 | .3 | .1 | .4 | 0 | 0 |
| | | | | | | | | | | | |
| c c-max $c_{2}=.63$ | | | | | | | | | | | |

Sequential Selection:

 Total ignorance: Exploration| t | k | p_{1} | u_{1} | p_{2} | u_{2} | p_{3} | u_{3} | p_{4} | u_{4} | v_{t} | S_{t} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 4 | . 4 | 0 | . 3 | . 9 | . 2 | . 3 | . 1 | . 4 | 0 | 0 |
| 2 | 3 | 0 | 0 | . 5 | . 9 | . 33 | . 3 | . 17 | . 4 | 0 | 0 |
| 3 | 2 | 0 | 0 | 0 | . 9 | . 67 | . 3 | . 33 | . 4 | 0 | 0 |
| 4 | 1 | 0 | 0 | $\stackrel{+}{+}$ | . 9 | 0 | . 3 | 1 | . 4 | 0 | 0 |
| 5 | 1 | 0 | 0 | | $.9$ | 0 | . 3 | 0 | | \cdots | . 9 |
| c-max $c_{2}=.63 \quad$ Backtrack $\quad B_{5}=.1$ | | | | | | | | | | | |

Two critical lessons

First critical lesson Backtracking implies BVSR: e.g. ...

Sketch 6

Sketch 12

Sketch 22

Sketch 10

Sketch 15

Sketch 26

Sketch 19
Sketch 11

Final Version

Second critical lesson BVSR increases S_{t} (decreases B_{t}): e.g. ...

benzene ring

Discussion

- I have just shown how BVSR has an intimate connection with creative problem solving
- Moreover, I have provided the rationale for two universal BVSR signs: variant superfluity and backtracking
- However, it should be equally clear from the formal definitions that the BVSR-creativity connection is essential rather than accidental (i.e., it is not contingent on the particular computational examples shown)

Discussion

- E.g., in a set of k variants with one useful solution x_{1} :
- $S \rightarrow 1$ as $p_{1} \rightarrow 1, u_{1} \rightarrow 1$, and $v_{1} \rightarrow 1$,
- and for all $i \neq 1, p_{i} \rightarrow 0, u_{i} \rightarrow 0$, and $v_{i} \rightarrow 0$, implying that $k \rightarrow 1$ (because $\Sigma p_{i} \leq 1$), whereas
- $c_{1} \rightarrow 1$ as $p_{1} \rightarrow 0, u_{1} \rightarrow 1$, and $v_{1} \rightarrow 0$,
- implying that $k \gg 1$ (variant superfluity)
- In general, highly sighted sets cannot possibly contain highly creative solutions

Discussion

- In contrast, absolutely nothing prevents a highly creative solution from emerging in a set where $S=0$ (i.e., $B=1$), for
- $S=0$ when $p_{i} u_{i} v_{i}=0$ for all i, indicating that any solution with $p_{i}>0$ and $u_{i}>0$ must have $v_{i}=0$, a stipulation consistent with $c_{i} \gg 0$
- If $v_{i}=0$, then $c_{i} \rightarrow 1$ as $p_{i} \rightarrow 0$ and $u_{i} \rightarrow 1$ while $S=0$
- E.g., serendipitous discoveries

Discussion

- Yet is BVSR-creativity link so close that it lacks empirical content?
- Is it tantamount to an assertion like "All bachelors are unmarried"?
- The answer is complex:
- On the one hand, the BVSR-creativity connection cannot be disproved empirically
- On the other hand, the operation of BVSR in creativity can be empirically investigated!

Discussion

- For example, we can ask:
- What cognitive processes and behavioral procedures generate sets that contain at least one solution where $p_{i} \rightarrow 0, u_{i} \rightarrow 1$, and $v_{i} \rightarrow 0$?
- What characteristics enable a person to engage in the foregoing cognitive processes and behavioral procedures?
- What environmental factors encourage or discourage a person from engaging in those processes or procedures?

Discussion

- To illustrate, what is the function of
- reduced latent inhibition?
- remote association?
- divergent thinking?
- behavioral tinkering?
- general intelligence?
- introversion?
- "positive" schizotypy or psychoticism?
- domain-specific expertise?
- multicultural experiences?
- These are all valid empirical questions!

Conclusion

- What we can't deny is that BVSR \rightarrow creativity
- So ...
- Donald Campbell (1960) was right!
- [P.S.: If only he had worked out the analytical details!]

