

Buffy Vampire Slayer Relationships *≠* BVSR

Creativity and Discovery as Blind Variation and Selective Retention:

Multiple-Variant Definitions and Blind-Sighted Integration

Definitions

- Under simultaneous selection
- Under sequential selection

Set of k Hypothetical Variants

Variant	Probability Utility		Expectation
X_1	p_1	u_1	q_1
X_2	p_2	u_2	q_2
<i>X</i> ₃	p_3	u ₃	q_3
• • •	• • •	• • •	•••
X_i	p_i	<i>u</i> _i	q_i
• • •	• • •	• • •	• • •
X_k	p_k	u_k	q_k

where $q_i = P(X_i / u_i)$

Blind-Sighted Continuum

- Blind-sighted measure
 - For all *k* variants: $0 \le r_{pq} \le 1$, where
 - 0 = perfect blindness
 - 1 = perfect sightedness
 - For subset of variants $p_i > 0$, truncated r_{pq}
 - Special Case 1: $r_{pq} = 1$, if all *ps*, *us*, and *qs* equiprobable
 - Special Case 2: $r_{pq} = 0$, if only all *ps* equiprobable

Variant Typology

Туре	p_i	u _i	q_i	Generation	Status	Designation
1	>0	>0	>0	possible	true positive	sighted inclusion
2	>0	>0	= 0	possible	true positive	blind inclusion
3	>0	= 0	= 0	possible	false positive	blind inclusion
4	= 0	>0	>0	impossible	false negative	blind exclusion
5	= 0	> 0	= 0	impossible	false negative	blind exclusion
6	= 0	= 0	= 0	impossible	true negative	sighted exclusion

Sequential Selection

- Need to add a index for consecutive trials to allow for changes in the parameter values:
- $p_{1t}, p_{2t}, p_{3t}, \dots p_{it}, \dots p_{kt}$
- $u_{1t}, u_{2t}, u_{3t}, \dots u_{it}, \dots u_{kt}$
- $q_{1t}, q_{2t}, q_{3t}, \dots q_{it}, \dots q_{kt}$
- where t = 1, 2, 3, ... n (number of trials)
- Then, $0 \le r_{pq}(t) \le 1$

Sequential Selection

- N.B.: Although $r_{pq}(t) \rightarrow 1$ as $t \rightarrow n$,
 - it would not do so monotonically except under highly unlikely circumstances,
 - e.g., when $\rho_{pu}(t) = -1$ (i.e., where the rank-order correlation between the *p*s and *u*s is perfectly negative)
 - Hence, the problem of local utility maxima and the question of when to terminate BVSR

Three Final Points

- Although the above formulation is very abstract, it can be readily explicated in terms of concrete examples
- Moreover, by deriving the blind-sighted continuum, the formulation allows us to avoid useless debates about BVSR
- That said, it is likely that highly creative scientists often operate at the blind end of the continuum