

BVSR ≠ Buffy Vampire Slayer Relationships

Why Creativity Cannot Be Sighted:

Blind Variation as Philosophical Proposition *and* Psychological Hypothesis

- Some issues in the cognitive sciences are just as much philosophical as psychological
- Examples:
 - mind-body problem
 - epistemology
 - determinism versus free will

- In particular,
 - Philosophical analysis is required to define the nature of the phenomenon: e.g.,
 - What? Why?
 - Psychological research is required to discover the empirical facts about the phenomenon: e.g.,
 - How? When? Where? Who?
- Specific example discussed here:

- Donald T. Campbell's (1960) "Blind variation and selective retention in creative thought as in other knowledge processes"
 - Stimulated controversy for the next half century
 - Furthermore, this controversy engaged both philosophers and psychologists
 - where proponents and opponents represent both disciplines:
 - The debate cuts across disciplinary lines

- Hence, here I will examine BVSR as
 - a philosophical (analytical) proposition, and
 - a psychological (empirical) hypothesis
- arguing that the two are mutually reinforcing
 - the former provides the logical necessity
 - i.e., *why* creative thought requires BVSR
 - the latter provides the empirical explanation
 - i.e., how BVSR operates to produce creative thoughts

- Though published in *Psychological Review*, the philosophical nature of BVSR was clear
 - First, Campbell quoted at great length Alexander Bain (1855), Paul Souriau (1881), Ernst Mach (1896), and Poincaré (1921)
 - Second, as implied by the title, Campbell was clearly concerned with epistemology – the "knowledge processes" in the title
- Indeed, according to the current editor, this paper could not be published in *PR* today!

- In addition, rather than develop BVSR's psychological side, Campbell (1974) chose to elaborate the philosophical aspect into his well-known evolutionary epistemology
- an elaboration that had explicit connections with the ideas of "conjectures and refutations" in Karl Popper's (1963) philosophy of science developed at almost the same time
- to wit, "bind variation" ≈ "bold conjecture"

- It was this later version of Campbell's theory that had such a big impact on philosophical thinking both
 - Pro (Bradie, 1995; Briskman, 1980/2009; Heyes & Hull, 2001; Kantorovich, 1993; Nickles, 2003; Stein & Lipton, 1989; Wuketits, 2001), and
 - Con (Kronfeldner, 2010; Thagard, 1988)

- That said, Campbell's (1960, 1974) theory was never really logically adequate because
 - One, he never defined creativity!

- That said, Campbell's (1960, 1974) theory was never really logically adequate because
 - Two, his definition of variational "blindness" was "connotative" rather than "denotative"
 - "an essential connotation of blind is that the variations emitted be independent of the environmental conditions of the occasion of their occurrence" (p. 381)
 - "a second important connotation is that the occurrence of trials individually be unconclated with the solution, in that specific correct trials are no more likely to occur at anyone point in a series of trials than another, nor than specific incorrect trials" (p. 381).

- Later, he tried to remedy the latter by introducing alternative terms, such as "unjustified," but without appeasing his critics
- Campbell, in fact, missed a golden opportunity, for if he had provided precise formal definitions, the relation between BVSR and creativity would be shown to be essential rather than hypothetical
- To be specific ...

- Given the set X of ideas (or responses):
- x_i , where i = 1, 2, 3, ..., k and $k \ge 1$
- Each idea has three *subjective* parameters
 - *initial* generation probability: p_i
 - where $0 \le p_i \le 1$, $\Sigma p_i \le 1$
 - *actual* utility: u_i , where $0 \le u_i \le 1$:
 - viz. probability of selection and retention
 - prior knowledge of u_i : v_i
 - where $0 \le v_i \le 1$ (e.g., ignorance to expertise)

Now, on the one hand, the creativity of idea x_i is given by the multiplicative function:

•
$$c_i = (1 - p_i)u_i(1 - v_i)$$
, where $0 \le c_i \le 1$

- where
 - $(1 p_i)$ = the idea's originality, and
 - $(1 v_i)$ = the idea's surprisingness
- i.e., to be creative is to be original, useful, and surprising, where the multiplicative function ensures that unoriginal, useless, and/or obvious ideas cannot be deemed creative regardless of the magnitude of the other two attributes

- The above definition can also be seen as a formal quantitative representation of common qualitative three-criterion definitions, e.g.,
 - US Patent Office: new, useful, and nonobvious
 - Boden (2004): novel, valuable, and surprising
 - Amabile (1996):
 - novel
 - appropriate, useful, correct, or valuable
 - heuristic rather than algorithmic

- On the other hand, the sightedness s_i of idea x_i is given by:
 - $S_i = p_i U_i V_i$,
 - where $0 \le s_i \le 1$ and $s_i = 1$ when $p_i = u_i = v_i = 1$
 - Thus, an idea's blindness is defined by $b_i = 1 s_i$
- Moreover, the sightedness S of the entire set X is given by the average of the k s[']_is, namely:
 - $S = 1/k \Sigma p_i u_i v_i$, where $0 \le S \le 1$
 - Hence, the set's blindness is defined by B = 1 S

- Blindness measures s_i and S do not require that the ps be either equiprobable or random
- On the contrary, blindness only requires that
 - the *p*s and *u*s be "decoupled" (i.e. $p_i u_i \rightarrow 0$) or,
 - if not decoupled, that the vs approach 0
- Indeed, B can equal 0 even when the ideas (or responses) are generated by a deterministic mechanism, such as a systematic search (e.g., all possible Cartesian or polar coordinates)
- This definition thus avoids a common misunderstanding regarding BVSR

- The foregoing definitions have important implications
 - **Part I**: c_i and s_i
 - Part II: c_i and S

- Part I: c_i and s_i
- *First,* highly sighted ideas *cannot* be highly creative:
 - In particular (where " \rightarrow " indicates "approaches"),
 - $s_i \rightarrow 1$ as $p_i \rightarrow 1$, $u_i \rightarrow 1$, and $v_i \rightarrow 1$, but
 - $c_i \rightarrow 1 \text{ as } p_i \rightarrow 0, u_i \rightarrow 1, \text{ and } v_i \rightarrow 0$
 - i.e., highly creative ideas *must* be highly blind

 Second, highly unsighted ideas can vary from the highly creative to the highly uncreative:

• If
$$u_i = 0$$
 and $v_i = 0$,

- then $c_i = s_i = 0$ for all values of p_i
- i.e., absolutely useless ideas can be neither creative nor sighted
- Hence, highly blind ideas can be highly creative, highly uncreative, or anything between!
- By definition, we cannot know c_i without conducting a generation and test to assess u_i

- Hence, the joint distribution of sightedness and creativity is necessarily triangular
- i.e., expected variance $\sigma^2(c) \rightarrow 1$ as $s \rightarrow 0$
- e.g., the following Monte Carlo simulation (Simonton, in press):

- Part II: c_i and S
- *First*, highly sighted sets *cannot* contain highly creative ideas: e.g.
 - If $u_1 = 1$, $S \rightarrow 1$ as $p_1 \rightarrow 1$, and $v_1 \rightarrow 1$, and
 - for all $i \neq 1$ where $u_i = 0$, $p_i \rightarrow 0$ (and $v_i \rightarrow 1$) implying that $k \rightarrow 1$ (because $\Sigma p_i \leq 1$), whereas
 - But if $u_1 = 1$, $c_1 \rightarrow 1$ as $p_1 \rightarrow 0$, and $v_1 \rightarrow 0$

- Second, highly unsighted sets can contain ideas that vary from the highly creative to the highly uncreative, for
 - S = 0 when $p_i u_i v_i = 0$ for all *i*, indicating that any idea with $p_i > 0$ and $u_i = 1$ must have $v_i = 0$, a stipulation consistent with $c_i >> 0$
 - viz. if $u_1 = 1$ and $v_1 = 0$, then $c_1 \rightarrow 1$ as $p_1 \rightarrow 0$
- e.g., (pseudo-)serendipitous discoveries
- Hence, a perfectly blind set can contain a highly creative idea

- Consequently, BVSR has an essential relation with creativity
 - In particular, it remains the only method available to distinguish between
 - $p_i \approx 0$, $u_i \approx 1$, and $v_i \approx 0$,
 - the highly creative idea, versus
 - $p_i \approx 0$, $u_i \approx 0$, and $v_i \approx 0$,
 - a useless but equally original idea
 - In a nutshell, BVSR is used to assess utilities when we do not already know them
 - We are "blind" to the actual and precise utility

- Brief digression (cf. Nickles, 2003):
 - Plato's Meno problem
 - The "No Free Lunch" Theorem

- Brief digression (cf. Nickles, 2003):
 - Plato's *Meno* problem
 - Q: How do we know that we know something without knowing it in advance?
 - A: We don't we can only engage in BVSR to test hypotheses or conjectures against a set criterion
 - Indeed, we may even have to use BVSR to identify the best criterion!

- Brief digression (cf. Nickles, 2003):
 - The "No Free Lunch" Theorem
 - Q: How do we know that BVSR provides the optimal procedure for finding the best or only solution?
 - A: We know it doesn't BVSR just provides the only procedure for identifying the most creative idea should any creative idea exist
 - BVSR can even be used to create an algorithm for solving future problems of a similar type
 - Yet when that happens, any solution generated by that algorithm will cease to be creative!

Now ... we've got to switch planes

 Although Campbell (1960) made a minimal attempt at grounding BVSR in empirical psychological research, subsequent BVSR advocates in psychology attempted to do so (viz., Damian & Simonton, 2011; Martindale, 1990; Simonton, 1985, 1988, 1999, 2007, 2009, 2010, 2012)

Yet these later attempts have attracted considerable criticisms as well (e.g., Dasgupta, 2004, 2010, 2011; Ericsson, 1999; Gabora, 2005, 2007, 2010, 2011; Russ, 1999; Schooler & Dougal, 1999; Sternberg, 1998, 1999; Weisberg, 2004, Weisberg & Hass, 2007)

- However, if the previous philosophical analysis has any validity, then the BVSRcreativity connection may not be an entirely empirical question!
- Rather, the BVSR-creativity relation might be partly comparable to a statement like "all bachelors are unmarried"
- albeit far more nuanced because blindness and creativity are not equivalent

- In particular, although "all bachelors are unmarried" is necessarily true (in the English language),
- and the statement "all highly creative ideas are highly blind" is also necessarily true (viz., whenever $u_i = 1$, $c_i \rightarrow 1$ as $b_i \rightarrow 1$)
- the converse statement "all highly blind solutions are highly creative" is necessarily false (e.g., if u_i = 0 and v_i = 0 but p_i = 0, then c_i = 0 though b_i = 1)

- Indeed, the last statement can be better converted into empirical questions:
 - What proportion of highly blind ideas is highly creative?
 - And does that proportion vary across individuals and fields?

- Nor are those the only empirical questions elicited, for we also can ask:
 - What cognitive processes and behavioral procedures generate sets that contain at least one idea where $p_i \rightarrow 0$, $u_i \rightarrow 1$, and $v_i \rightarrow 0$?
 - What characteristics enable a person to engage in the foregoing cognitive processes and behavioral procedures?
 - What environmental factors affect the person's ability to engage in those processes or procedures?

- To illustrate, what is the function (+ or -) of
 - reduced latent inhibition?
 - remote association and divergent thinking?
 - behavioral tinkering?
 - general intelligence?
 - domain-specific expertise?
 - psychoticism or "positive" schizotypy?
 - bilingualism and multicultural experiences?
- These are all valid empirical questions!

- Furthermore, BVSR provides the basis for combinatorial models that lead to precise and comprehensive predictions regarding:
 - Cross-sectional variation and longitudinal changes in creative productivity
 - Multiple discovery and invention
 - Scientific and technological growth
- See Simonton (2004, 2010)

- Lastly, beyond the foregoing nomothetic analyses, BVSR can be used as the basis for case studies of historic acts of creativity and discovery: e.g.
 - Galileo's telescopic observations (Simonton, 2012)
 - Picasso's *Guernica* (Damian & Simonton, 2011; Simonton, 2007) ... e.g., backtracking

Conclusion

 Hence, BVSR-creativity has both philosophical and psychological validity

